000863842 001__ 863842
000863842 005__ 20240708132752.0
000863842 037__ $$aFZJ-2019-03820
000863842 041__ $$aEnglish
000863842 1001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b0$$ufzj
000863842 1112_ $$aXVI conference of the European Ceramic Society 2019$$cTorino$$d2019-06-16 - 2019-06-20$$gECerS 2019$$wItaly
000863842 245__ $$aTowards High-Energy Solid-State Lithium Batterieswith Garnet-type Electrolytes
000863842 260__ $$c2019
000863842 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1564127442_12190
000863842 3367_ $$033$$2EndNote$$aConference Paper
000863842 3367_ $$2BibTeX$$aINPROCEEDINGS
000863842 3367_ $$2DRIVER$$aconferenceObject
000863842 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000863842 3367_ $$2ORCID$$aOTHER
000863842 520__ $$aThe application of garnet-type electrolyte thin films was studied, targeting at solid-state batteries with high energy density. Firstly, the chemical stability window Li5La3(Zr,Ta)2O12 with the so-called high voltage cathode active material LiCoMnO4 was assessed in order to determine the temperature range for a successful combination. The materials showed different thermal stability for different compositions. Secondly, Li5La3(Zr,Ta)2O12 was deposited by a sputter deposition process as thin films. A depletion of lithium in the sputter target can occur after several depositions, which leads to decreasing Li content in the electrolyte thin films. Therefore, the target was enriched with LiOH∙H2O to compensate the lithium loss. Depositions carried out with a lithium rich target of Li5La3Ta2O12 showed the garnet structure on glass substrates after deposition at 500 °C, i.e. at significantly lower temperature compared to Li5La3Zr2O12. The garnet structure was observed on Au-coated EN 1.4767 substrates already at a substrate temperature of 400 °C, which is 300 K lower than comparable depositions of Li7La3Zr2O12, which is within the stability range of a combination of Li5La3Ta2O12 electrolytes and high-voltage spinels.
000863842 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000863842 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b1$$ufzj
000863842 7001_ $$0P:(DE-Juel1)165951$$aWindmüller, Anna$$b2$$ufzj
000863842 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b3$$ufzj
000863842 7001_ $$0P:(DE-Juel1)129671$$aVondahlen, Frank$$b4$$ufzj
000863842 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b5$$eCorresponding author$$ufzj
000863842 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b6$$ufzj
000863842 909CO $$ooai:juser.fz-juelich.de:863842$$pVDB
000863842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich$$b0$$kFZJ
000863842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich$$b1$$kFZJ
000863842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165951$$aForschungszentrum Jülich$$b2$$kFZJ
000863842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b3$$kFZJ
000863842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129671$$aForschungszentrum Jülich$$b4$$kFZJ
000863842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b5$$kFZJ
000863842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b6$$kFZJ
000863842 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000863842 9141_ $$y2019
000863842 920__ $$lyes
000863842 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000863842 980__ $$aabstract
000863842 980__ $$aVDB
000863842 980__ $$aI:(DE-Juel1)IEK-1-20101013
000863842 980__ $$aUNRESTRICTED
000863842 981__ $$aI:(DE-Juel1)IMD-2-20101013