Hauptseite > Publikationsdatenbank > Towards High-Energy Solid-State Lithium Batterieswith Garnet-type Electrolytes > print |
001 | 863842 | ||
005 | 20240708132752.0 | ||
037 | _ | _ | |a FZJ-2019-03820 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Lobe, Sandra |0 P:(DE-Juel1)161444 |b 0 |u fzj |
111 | 2 | _ | |a XVI conference of the European Ceramic Society 2019 |g ECerS 2019 |c Torino |d 2019-06-16 - 2019-06-20 |w Italy |
245 | _ | _ | |a Towards High-Energy Solid-State Lithium Batterieswith Garnet-type Electrolytes |
260 | _ | _ | |c 2019 |
336 | 7 | _ | |a Abstract |b abstract |m abstract |0 PUB:(DE-HGF)1 |s 1564127442_12190 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Abstract |2 DataCite |
336 | 7 | _ | |a OTHER |2 ORCID |
520 | _ | _ | |a The application of garnet-type electrolyte thin films was studied, targeting at solid-state batteries with high energy density. Firstly, the chemical stability window Li5La3(Zr,Ta)2O12 with the so-called high voltage cathode active material LiCoMnO4 was assessed in order to determine the temperature range for a successful combination. The materials showed different thermal stability for different compositions. Secondly, Li5La3(Zr,Ta)2O12 was deposited by a sputter deposition process as thin films. A depletion of lithium in the sputter target can occur after several depositions, which leads to decreasing Li content in the electrolyte thin films. Therefore, the target was enriched with LiOH∙H2O to compensate the lithium loss. Depositions carried out with a lithium rich target of Li5La3Ta2O12 showed the garnet structure on glass substrates after deposition at 500 °C, i.e. at significantly lower temperature compared to Li5La3Zr2O12. The garnet structure was observed on Au-coated EN 1.4767 substrates already at a substrate temperature of 400 °C, which is 300 K lower than comparable depositions of Li7La3Zr2O12, which is within the stability range of a combination of Li5La3Ta2O12 electrolytes and high-voltage spinels. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
700 | 1 | _ | |a Dellen, Christian |0 P:(DE-Juel1)158085 |b 1 |u fzj |
700 | 1 | _ | |a Windmüller, Anna |0 P:(DE-Juel1)165951 |b 2 |u fzj |
700 | 1 | _ | |a Tsai, Chih-Long |0 P:(DE-Juel1)156244 |b 3 |u fzj |
700 | 1 | _ | |a Vondahlen, Frank |0 P:(DE-Juel1)129671 |b 4 |u fzj |
700 | 1 | _ | |a Uhlenbruck, Sven |0 P:(DE-Juel1)129580 |b 5 |e Corresponding author |u fzj |
700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 6 |u fzj |
909 | C | O | |o oai:juser.fz-juelich.de:863842 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)161444 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)158085 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)165951 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)156244 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129671 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129580 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)161591 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | _ | _ | |a abstract |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|