001     863842
005     20240708132752.0
037 _ _ |a FZJ-2019-03820
041 _ _ |a English
100 1 _ |a Lobe, Sandra
|0 P:(DE-Juel1)161444
|b 0
|u fzj
111 2 _ |a XVI conference of the European Ceramic Society 2019
|g ECerS 2019
|c Torino
|d 2019-06-16 - 2019-06-20
|w Italy
245 _ _ |a Towards High-Energy Solid-State Lithium Batterieswith Garnet-type Electrolytes
260 _ _ |c 2019
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1564127442_12190
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a The application of garnet-type electrolyte thin films was studied, targeting at solid-state batteries with high energy density. Firstly, the chemical stability window Li5La3(Zr,Ta)2O12 with the so-called high voltage cathode active material LiCoMnO4 was assessed in order to determine the temperature range for a successful combination. The materials showed different thermal stability for different compositions. Secondly, Li5La3(Zr,Ta)2O12 was deposited by a sputter deposition process as thin films. A depletion of lithium in the sputter target can occur after several depositions, which leads to decreasing Li content in the electrolyte thin films. Therefore, the target was enriched with LiOH∙H2O to compensate the lithium loss. Depositions carried out with a lithium rich target of Li5La3Ta2O12 showed the garnet structure on glass substrates after deposition at 500 °C, i.e. at significantly lower temperature compared to Li5La3Zr2O12. The garnet structure was observed on Au-coated EN 1.4767 substrates already at a substrate temperature of 400 °C, which is 300 K lower than comparable depositions of Li7La3Zr2O12, which is within the stability range of a combination of Li5La3Ta2O12 electrolytes and high-voltage spinels.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
700 1 _ |a Dellen, Christian
|0 P:(DE-Juel1)158085
|b 1
|u fzj
700 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)165951
|b 2
|u fzj
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 3
|u fzj
700 1 _ |a Vondahlen, Frank
|0 P:(DE-Juel1)129671
|b 4
|u fzj
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 6
|u fzj
909 C O |o oai:juser.fz-juelich.de:863842
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161444
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158085
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165951
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129671
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21