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Abstract—An important prerequisite for the analysis of spike synchrony in extracellular recordings is the extraction of

single-unit activity from the multi-unit signal. To identify single units, potential spikes are separated with respect to

their potential neuronal origins (‘spike sorting’). However, different sorting algorithms yield inconsistent unit assign-

ments, which seriously influences subsequent spike train analyses. We aim to identify the best sorting algorithm for

subthalamic nucleus recordings of patients with Parkinson's disease (experimental data ED). Therefore, we apply var-

ious prevalent algorithms offered by the ‘Plexon Offline Sorter’ and evaluate the sorting results. Since this evaluation

leaves us unsure about the best algorithm, we apply all methods again to artificial data (AD) with known ground truth.

AD consists of pairs of single units with different shape similarity embedded in the background noise of the ED. The

sorting evaluation depicts a significant influence of the respective methods on the single unit assignments. We find

a high variability in the sortings obtained by different algorithms that increases with single units shape similarity.

We also find significant differences in the resulting firing characteristics. We conclude that Valley-Seeking algorithms

produce the most accurate result if the exclusion of artifacts as unsorted events is important. If the latter is less impor-

tant (‘clean’ data) the K-Means algorithm is a better option. Our results strongly argue for the need of standardized vali-

dation procedures based on ground truth data. The recipe suggested here is simple enough to become a standard

procedure. © 2019 The Authors. Published by Elsevier Ltd on behalf of IBRO. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

The decomposition of extra-cellular multi-unit recordings
into single unit activity is a prerequisite for studying neuronal
activity patterns (Chibirova et al., 2005; Kühn et al., 2005;
Einevoll et al., 2012; Todorova et al., 2014; Yang et al.,
2014). The assignment of spikes to individual neurons
based on the similarity of their spike shapes is a method
commonly referred to as spike sorting (Lewicki, 1998;
Quiroga, 2007; Quiroga, 2012). It is composed of three prin-
cipal steps. First, the spikes are extracted from the band-
pass filtered raw signal. Second, salient features of each
spike waveform are identified. A common method to
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automatically extract such features is the principal compo-
nent analysis Lewicki (1998); Quiroga (2007). Third, a sort-
ing algorithm assigns spikes to putative single neuronal
units using the extracted features. Many such spike sorting
algorithms are available (Lewicki, 1998; Quiroga, 2007;
Quiroga, 2012; Rossant et al., 2016; Chung et al., 2017;
Yger et al., 2018) but they typically provide inconsistent results
for the same data set (Brown et al., 2004; Wild et al., 2012;
Knieling et al., 2016). Such differences in the sorting results
affect the subsequent spike train analyses (Brown et al.,
2004; Pazienti and Grün, 2006; Todorova et al., 2014).
Therefore, a major challenge is to identify an appropriate spike
sorting algorithm for a given data set, considering also its
impact on the subsequent analysis (Lewicki, 1998; Todorova
et al., 2014).
Extracellular recordings from the Subthalamic nucleus

(STN, see Table 1 for a list of abbreviations) of patients with
an open access article under the CC BY license (http://creativecommons.org/
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Table 1. List of abbreviations used throughout this study.

Abbreviation Meaning

ED experimental data
AD artificial data
STN Subthalamic nucleus
PD Parkinson's Disease
DBS Deep Brain Stimulation
OFS Plexon Offline Sorter
TMS Template Matching
KM(S) K-Means (scan)
VS(S) Valley Seeking (scan)
StEM(S) standard Expectation Maximization (scan)
TDEM(S) t-distribution Expectation Maximization (scan)
PC principle component
rpv refractory period violation
SD standard deviation
2D 2 dimensional
TP true positive
TN true negative
FP false positive (sorted)
FN false negative
FPp false positive (unsorted)
IS isolation score
Di internal cluster distance
ISI inter-spike interval
LV local coefficient of variation
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Parkinson's Disease (PD), obtained during Deep Brain
Stimulation (DBS) surgery provide important information
about pathological activity patterns (e.g., Reck et al., 2009;
Florin et al., 2012; Deffains et al., 2014). The analysis of
the corresponding single unit activity contributes to identify
and localize pathological patterns (Hutchison et al., 1998).
Besides common spike sorting problems such as bursting

activities and overlapping spikes (Lewicki, 1998; Quiroga,
2007), or waveform changes induced by an electrode drift,
the separation of single units in human STN data is particu-
larly challenging (Knieling et al., 2016). Microelectrode
recordings from brain areas densely packed with neurons,
such as the STN (Hamani, 2004), contain spikes from a
large number of neurons. The overall recording time is
restricted to only a few minutes per recording site since
the surgery is exhausting and the patients have to stay
awake.2 The short recording time does not allow to wait
for stabilization of tissue and electrode. In contrast, animal
studies allow for longer recordings so that it is possible to
account for initial stabilization (Raz et al., 2000). Also, simul-
taneous intra- and extracellular recordings for calibration
can be performed in animal studies (Harris et al., 2000)
but this is not feasible during DBS surgery. Another advan-
tage in animal studies is the usage of 4-wire close-by elec-
trodes (i.e., tetrodes) or even polytrodes (Rey et al., 2015;
Rossant et al., 2016). The resulting recordings generally
2 The aim of the DBS procedure is not the recording itself but to
locate the optimal stimulation site
enable a more accurate spike sorting because one neuron
is registered at different wires allowing for triangulation
(Harris et al., 2000; Buzsáki, 2004; Lefebvre et al., 2016;
Rossant et al., 2016; Yger et al., 2018). In contrast, human
DBS recordings are typically performed with up to five
single-wire electrodes (McNaughton et al., 1983), typically
inserted using a Ben-gun configuration (Gross et al., 2006;
Florin et al., 2008; Michmizos and Nikita, 2010; Reck
et al., 2012). These electrodes have a maximum diameter
of 1 mm with a minimal distance of 2 mm. Thus, the inser-
tion causes a considerable initial tissue movement and the
spikes of one neuron are detected on one electrode only.
A few comparative spike sorting studies for human STN

recordings have been introduced (Chibirova et al., 2005;
Wild et al., 2012; Knieling et al., 2016). Wild et al. (2012)
compares three widely used open source sorting toolboxes
(WaveClus (Quiroga et al., 2004), KlustaKwik (Harris et al.,
2000), and OSort (Rutishauser et al., 2006)) by applying
them to artificial data with some STN characteristics. They
conclude that WaveClus yields the best results, but does
not perform optimally. Knieling et al. (2016) compares a
new approach to sort STN spikes to OSort and WaveClus,
using the artificial data from (Wild et al., 2012). Chibirova
et al. (2005) demonstrate the application of the unsuper-
vised spike sorting algorithm presented in (Aksenova
et al., 2003) to both STN recordings from PD patients and
artificial data with different noise levels.
Most of the above studies concentrate on open source

spike sorting algorithms, whereas many studies recording
from the human STN (e.g., Shinomoto et al., 2003; Moran
et al., 2008; Schrock et al., 2009; Shimamoto et al., 2013;
Yang et al., 2014; Kelley et al., 2018; Lipski et al., 2018)
use a commercially available software, the ‘Plexon Offline
Sorter’ OFS. Because of its frequent usage and relevance
in the scientific community we focus our studies on the var-
ious sorting algorithms offered by the OFS. There are some
comparative studies for spike detection and feature extrac-
tion (e.g., Wheeler and Heetderks, 1982; Lewicki, 1998;
Adamos et al., 2008; Gibson et al., 2008; Yang et al.,
2011), but less studies focus on clustering. Here, we con-
centrate the comparison of the results obtained with the fol-
lowing OFS cluster algorithms: Template Matching (TMS),
K-Means (KM), Valley Seeking (VS), standard and t-
distribution Expectation Maximization (StEM and TDEM,
respectively). Varying the cluster algorithm, we use an iden-
tical detection procedure and the first two or three principal
components (PCs) as features, since the number of PCs
to be used for the sorting is another matter of debate
(Hulata et al., 2002). This study does not deal with any para-
meter or feature selection optimization but aims for reproduci-
ble results that are directly comparable to each other. Thus,
we apply unsupervised clustering without manual, i.e., user-
specific, intervention. Still, there is one exception, namely man-
ual TMS, which we use for comparison purposes.
Firstly, we apply all sorting algorithms to the experimental

STN data (ED) recorded from PD patients. This enables us
to depict the method-dependent differences in the ED sort-
ing results (see Fig. 1) and to subsequently point out their
considerable impact on the analysis of spike trains from



Fig. 1. Exemplary spike sorting of human STN recordings. (A) Two distinct single units and (B) several similar single units were extracted from two
STN recordings (top traces with multi-unit activity MUA) by amplitude thresholding (horizontal red line). Colored vertical lines below the continuous traces
indicate time stamps of potential spikes. Extracted spike waveforms are shown on the left, the corresponding clustering in 2D feature space on the right:
colored dots represent spikes, unsorted events in black. Table 3 lists the Isolations scores and the percentage of refractory period violations for all clusters
shown here. The corresponding internal cluster distances (Di) are ranging from 730 to 950, except for TDEMS in panel B with Di = 1100 and VSS in panel
B with Di values in between 460 and 580 (not normalized).
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real-world recordings. The evaluation of single unit assign-
ments and properties yield significant differences in the
spike sorting results and suggests a seemingly best
method. For a quantitative comparison, however, ground
truth data are necessary, i.e., data with known single unit
assignments (e.g., Kretzberg et al., 2009; Wild et al.,
2012; Yger et al., 2018). We therefore generate artificial
data (AD) with known ground truth that include several fea-
tures that are close to those of STN recordings. The spike
sorting algorithms are then applied to the AD to evaluate
their sorting quality. Based on this procedure, we are finally
able to identify which methods works best under which
circumstances.1–3
MATERIAL AND METHODS

We first briefly describe the ED, followed by a description of
the AD generation. Then, we explain the main steps of spike
sorting and finally, we detail the comparison and validation
of the results of different clustering algorithms.

Experimental data

ED were recorded intraoperatively from six awake patients
with tremor-dominant idiopathic PD undergoing STN-DBS
surgery. The STN was localized anatomically with preo-
perative imaging and its borders were intraoperatively veri-
fied by inspection of multi-unit spiking activity (details are



3 The smaller one is kept as it is
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Fig. 2. Artificial data generation. (A) Four pairs (solid and dashed curves) of artificial spikes that
are very distinct (setI, blue), distinct (setII, cyan), similar (setIII, magenta), and very similar (setIV,
violet). (B) Exemplary setI spike pair (u1,u2) added to the noise (100 spikes each). Thick light blue
and green lines indicate the average spike waveforms of u1 and u2, respectively, black lines indi-
cate perturbations (pt). (C) Simulated recording traces (black lines) with the corresponding ground
truth spike times (ts). Each trace contains one particular (u1,u2) pair as well as perturbations pt.
indicated by green, blue and black markers, respectively).
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described below). Up to five combined micro–macro-elec-
trodes recorded single cell activities and LFPs using the
INOMED ISIS MER-system 2.4 beta, INOMED Corp.,
Teningen, Germany. Four of the electrodes were distributed
equally on a circle with 2 mm distance from the central elec-
trode using a Ben Gun electrode guide tool. ED were
already analyzed in a previous study (Florin et al., 2012)
which was approved by the local ethic committee. For more
detailed information about the recording setup and record-
ing procedures see Florin et al. (2008); Reck et al. (2012);
Gross et al. (2006); Michmizos and Nikita (2010).
The microelectrodes had an impedance of around 1

Mduring each recording session. The signal was amplified
by a factor of 20 000, band-pass filtered from 220 to 3000
Hz, using a fixed hardware Bessel filter, and sampled at
25 kHz by a 12 bit A/D converter (± 0.2 V input range). We
refrained from a second filtering to avoid further spike shape
distortions (Quiroga, 2009). Recording started 6 mm above
the previously planned target point. The extracellular multi-
unit signals were recorded after moving the electrode closer
to its target in 1 mm steps. Before entering the STN, the
electrodes traverse the zona incerta characterized by a
low background and absent spiking activity. Upon entering
the STN background noise suddenly increases and three
large amplitude discharge patterns are observed: tonic, irre-
gular, and bursting activity (Rodriguez-Oroz et al., 2001). In
patients with tremor, bursting activity may
synchronize to tremor frequency. Upon
leaving the STN, background activity sud-
denly drops and spiking activity either sig-
nificantly reduces or becomes highly
regular.
A total of 38 STN recoding traces from

six awake PD patients at rest with one to
four simultaneous microelectrode trajec-
tories in different recording depths were
analyzed. Some example sortings are
shown in Fig. 1.
The inclusion criteria for a data trace

were a) a minimum length of 20 s, b) no
drifts in background activity, c) spiking
activity in the STN (based on visual
inspection), and d) not exceeding the
dynamic range of the A/D converter. The
longest stable segment of a given trace
was selected for further analysis; the first
2 s of each recording after electrode
movement were discarded.

Artificial data generation

A rigorous way to compare spike sorting
methods is to test them on data sets with
known ground truth, i.e., we know which
of the spikes originate from which neuro-
nal units. To this end, we generate AD
by first selecting the two most distinct
average spike waveforms from one ED
trace. To enhance their differences, the
larger one is multiplied with a factor of 1.1 so that it exhibits
more pronounced peak amplitudes than given in the ED.3

We call the waveforms w1 and w2. We then linearly com-
bine w1 and w2 to obtain spike pairs (u1,u2) whose similar-
ity can be varied parametrically:

u1 ¼ λ � w1þ 1−λð Þ � w2 ð1Þ

u2 ¼ 1−λð Þ � w1þ λ � w2 with λ∈ 0:5; 1½ �

Thus, by varying λ we create data sets with different
degrees of similarity of the spike pairs (u1,u2), see Fig. 2A.
For λ = 1 we obtain u1 = w1 and u2 = w2 with u1 and u2

being most different. For λ = 0.5, u1 and u2 are identical.
We generate four AD sets, each with one spike pair (u1,
u2) obtained for a certain value of λ with λ = 1,0.8,0.7,0.6.
The corresponding data sets are called setI (λ = 1, most
distinct pair), setII, setIII and setIV (λ = 0.6, most similar
pair). The hypothesis behind this choice is that it should
be easier to distinguish distinct spikes than similar spikes.
The spike pairs are then added to background noise

(Fig. 2B and C). To obtain the noise as realistic as possible,
we generate it from the ED, using concatenated recording
intervals without any spikes. We reshuffle the phase of the
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Fig. 3. Spike sorting workflow. Schematic overview of the different steps
involved in a general spike sorting workflow: preprocessing, feature extrac-
tion, clustering, and cluster evaluation. Blue frame and text indicate the
focus of this study. Different clustering methods are separated into origin-
ally supervised (cyan) and unsupervised algorithms (blue). Algorithms that
are crossed out were only used in combination with a parameter scan (gray
background) or with default values to enable unsupervised clustering.
Dotted lines indicate possible feedback that can be used for an iterative
improvement.

4 Exceptionally we also used 4.5 SD, depending on the individual
signal-to-noise-ratio of the ED spikes.
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original noise so that the power spectrum is kept constant.
The respective pairs of spikes (u1,u2) are added to the
noise, each at a rate of 14 Hz as estimated from the ED,
assuming a Poisson distribution. Each of the four generated
data sets has a length of 40 s, sampled at 25 kHz resulting
in approximately 500 spikes per unit. Refractory period vio-
lations (rpv) are corrected for by shifting the corresponding
spikes of each single unit in time (the second one is shifted
forward by 1 to 50 time stamps depending on the closeness
of the two spikes) until no more rpv are found.
Inspired by the difficulties that occur during sorting the

ED, we additionally include the following challenges. We
inject overlapping spikes from different single units by
inserting u1 spikes 10 to 22 time stamps (randomly chosen)
after some randomly chosen u2 spikes (ca. 2.5% of the total
number of spikes per trace as estimated from the ED) and
vice versa. We then again correct for rpv. Moreover, we
add in total ca. 100 so-called perturbation signals to each
trace. These represent artifacts, e.g., noise originating from
electrical equipment which may resemble spikes (Horton
et al., 2007). Perturbations are given by 8 sinusoidal func-
tions (black lines in Fig. 2B). Each perturbation consists of
one cycle of the following frequencies f = 1,0.75,0.5,0.25
with respect to T = 1.52 ms spike length, using a positive
amplitude of either the peak amplitude of u2 or half of it.
The negative peak amplitude is fixed to the minimum of
the spike generated with λ = 0.5. The corresponding inser-
tion times are again Poisson distributed with a firing rate of
3.3 Hz as estimated from the ED. The aim is to investigate
how different sorting methods deal with such perturbations.
Ideally, perturbation signals should be left as unsorted
events.
We generate 10 realizations for each of the four AD data

sets. The noise is identical for the four data sets within
one realization (setI to setIV) but changes between the 10
realizations. After inserting potential spike events, i.e., u1,
u2 and perturbations, into the noise, some threshold cross-
ings vanish while some new crossings without a corre-
sponding AD event emerge, e.g., due to possible overlaps
between u1, u2 and perturbations. Therefore, the spike
times of the ground truth are obtained as follows: (1) Calcu-
lation of the spike detection threshold, i.e., mean signal
minus four times the standard deviation (SD) of the com-
plete trace, identical for all sorting methods and identical
to the procedure used for the ED. (2) Insertion of u1 spikes
into the pure noise and detection of threshold crossings. (3)
Repetition of step (2) for u2 and perturbation signals,
respectively. When comparing the spike times in ground
truth and sorting results we only consider threshold cross-
ings that occurred after insertion and that have a corre-
sponding AD event time stamp. We allow for deviations up
to ±0.5 ms. AD were generated using Python2.7.
Spike detection and spike sorting

ED and AD are separated into single units using spike sort-
ing algorithms implemented in the ‘Plexon Offline Sorter’
OFS (Offline SorterTM, Plexon Inc., Dallas, TX, USA). Fig.
3 shows a general spike sorting workflow composed of four
principle steps: preprocessing including spike detection,
feature selection, feature based clustering, and finally the
evaluation of the resulting single units. The blue frame and
text indicate the focus of our comparative approach.
During a preprocessing step, artifacts (e.g. non-

physiological events that may resemble spikes or some of
the perturbations in the AD) were identified by visual inspec-
tion and removed. The spike detection threshold was set to
minus four SD of the background noise4 (Mrakic-Sposta
et al., 2008). After detection, 360 s before and 1160 s after
threshold crossing were extracted, resulting in a total spike
length of 1520 s (38 time stamps). The spikes are aligned
at the point of threshold crossing (cf. Fig. 2B).
Several features of the waveforms such as peak and val-

ley amplitude, peak-valley distance, energy of the signal,
and PCs were extracted. Only for the supervised ‘manual’
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sorting method TMS (see below), all extracted features
were used to visually identify the templates and thus the
number of clusters, while the clustering itself uses the com-
plete waveforms. For all other algorithms, clustering is
solely based on the first two (2D) or three (3D) principal
components. We apply the sorting algorithms TMS, KM,
VS, StEM, and TDEM (the methods are described in the fol-
lowing subsections) to both AD and ED.
VS and TDEM automatically determine the number of

resulting clusters (unsupervised clustering) but contain
method-specific parameters which were set to default
values (see Table 2).
In addition, these methods were applied in combination

with a parameter scan which optimizes the method-
specific parameters (called VSS, TDEMS if used with a
scan). During such a scan, a spike sorting algorithm runs
repetitively for a wide range of parameter values (varied
by step size Δ) to identify and select the run that yields the
best sorting quality based on cluster quality metrics, e.g.,
distances in feature space. TMS, KM, and StEM require
user intervention. To enable unsupervised clustering, KM
and StEM are only applied in combination with a parameter
scan (KMS, StEMS) which automatically computes the
appropriate number of clusters. Table 2 and Fig. 3 list the
methods that are used with a scan, as well as the corre-
sponding parameter ranges. The idea behind performing a
scan and solely using PC features is to obtain user-
independent results that can easily be reproduced and
compared.
The final step of the spike sorting workflow is the evaluation

of the resulting single units, e.g., in terms of separation quality
and refractory period violations. Some spike sorting methods
(e.g., Harris et al., 2000; Barnett et al., 2016) include a loop that
enables cluster refinement, mergence (Yger et al., 2018) or
separation in case of ill-defined single units.
In total, 13 different sorting approaches were applied to

each data trace: Template Matching with scan (TMS), Val-
ley Seeking with scan (VSS2D and VSS3D), Valley Seeking
with default value (VS2D and VS3D), K-Means with scan
(KMS2D and KMS3D), standard Expectation Maximization
with scan (StDEMS2D and StDEMS3D), t-distribution
Expectation Maximization with scan (TDEMSS2D and
TDEMSS3D), and t-distribution Expectation Maximization
with default value (TDEM2D and TDEM3D), cf. Fig. 3. We
apply each unsupervised method using the first two (2D)
or three (3D) PCs, enabling a comparison of the corre-
sponding performances. Similarly, we investigate the effect
of using a parameter scan compared to using the default
value (cf. Table 2).
Table 2. Methods used with a scan and their tunable parameters. The
last column indicates the range of tested values, the step size Δ, and
the default value d if used without scan.

Method Scanning parameter Scanning range

KMS number of single units 1–7 single units
StEMS number of single units 1–7 single units
TDEM(S) degree of freedom multiplier DOF 10 to 30, Δ=5, d = 10
VS(S) Parzen multiplier PM 0.5 to 1.5, Δ=0.2, d = 1
After spike sorting, each threshold crossing event was
either labeled as sorted into a cluster or left unsorted if no
clear assignment could be made. In the following subsec-
tions, we give more details on the spike sorting algorithms
used in our study.
Template Matching sorting (TMS)

TMS is a supervised clustering algorithm, the number of
clusters has to be predefined by the user. Based on various
features the user selects one waveform as template for
each cluster. Then, the algorithm calculates the root-
mean-square differences Dw for all waveforms w to these

templates t:Dw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N∑N

i¼1ðwi−tiÞ2
q

, where N is the number

of time stamps per waveform. TMS identifies the template
with minimum difference Dw for each single waveform. If
the minimum is smaller than a user defined value for the
allowed variability, the particular waveform will be assigned
to the cluster defined by this template.
K-Means clustering as Scan (KMS)

The K-Means algorithm requires the user to select a prede-
fined number of clusters and the corresponding cluster cen-
ters which are here provided by the scanning algorithm.
First, each sample point, i.e., each waveform in PC feature
space is assigned to the nearest cluster center, based on
Euclidean distances. Second, the cluster centers are recal-
culated using the center-of-gravity method (Gregory et al.,
2007; Dai et al., 2008). Steps one and two are repeated until
convergence is reached, i.e., cluster centers are stable.
Finally, outliers are removed: Based on mean (μ) and SD
of the distances of all sample points from their cluster cen-
ter, a sample point is removed if it exceeds the outlier
threshold, set to μ+2·SD. It is then left as unsorted event.
Valley seeking (VS)

The VS algorithm is based on an iterative non-parametric
density estimation (Fukunaga, 1990; Zhang et al., 2007).
To subdivide the sample points (i.e., spikes) into exclusive
clusters, the algorithm estimates their density in PC feature
space using the Parzen approach (Fukunaga, 1990), which
estimates the appropriate kernel and its width for the best
separation. VS calculates the number of neighbors of each
sample point in a fixed local volume and determines the val-
leys in the density landscape. The critical radius R of the
fixed volume is defined as R = 0.25 · σ · PM, where σ is
the SD of the distances of all samples to the overall center
point, and PM is the Parzen multiplier, a user-defined para-
meter. A sample point becomes a seed point of a cluster if
its number of neighbors exceeds a threshold. Then, initial
clusters are formed by the seed points with the most neigh-
bors. An iterative process classifies still unassigned sam-
ple points or leaves them unsorted. We run VS both with
the PM default value, and using the scanning algorithm
for PM (VSS).



5 AD were used to calibrate the IS scaling parameter to five.

174 Jeyathevy Sukiban et al. / Neuroscience 414 (2019) 168–185
Expectation maximization algorithms (EM)

The standard EM (StEM) algorithm is an iterative, para-
metric approach that assumes that several Gaussian distri-
butions underlie the distribution of sample points (i.e.,
spikes). The algorithm requires the user to select the num-
ber of Gaussians to be fitted and to define the initial cluster
centers (Fukunaga, 1990; Sahani, 1999). To enable unsu-
pervised clustering these are provided by the scanning
algorithm. The algorithm starts by running the K-Means
algorithm for the first assignment of sample points from
which the initial Gaussian parameters are estimated. An
iterative process optimizes these parameters until conver-
gence of the Gaussian distributions to stable values. Each
iteration consists of an expectation (E)-step that calculates
the likelihood for each sample point to belong to each
Gaussian, and a maximization (M)-step that maximizes
the expected likelihood by optimizing the parameters
(Fukunaga, 1990; Sahani, 1999).
The t-distribution EM-algorithm (TDEM) differs from the

StEM by fitting wide-tailed t-distributions instead of Gaus-
sians. It has been shown that t-distributions yield a better
fit to the underlying statistics of the waveform samples
(Shoham et al., 2003). TDEM directly provides unsuper-
vised clustering by starting with a large number of clusters
and iteratively optimizing the likelihood function (assign-
ment of samples to clusters) (Shoham et al., 2003). The
shape of the t-distribution is determined by the degree of
freedom (DOF) multiplier which depends on the sample size
and controls the convergence properties (Figueiredo and
Jain, 2002; Shoham et al., 2003). We run TDEM both with
the DOF default value, and using the automatic scanning
algorithm for DOF. In the Plexon implementation of these
EM algorithms no events are left unsorted.

Evaluation of spike sorting results

Sorting results are characterized by the number of detected
single units and the number of unsorted events. The result-
ing means and SDs per data set are calculated by aver-
aging over the 38 ED recording traces and the 10
realizations for each AD set, respectively. In the following
we detail the evaluation of the corresponding results.

Comparison with ground truth data

To evaluate the accuracy of the clustering algorithms, the
resulting single units were compared with a given ground
truth. To quantify accordance with and deviations from
the ground truth, we calculate the following numbers (cf.
Fig. 5D and Fig. 8D):

• TP true positives, i.e., correctly assigned spikes: a wave-
form was given as element of a certain single unit and
was sorted into this single unit.

• FP false positives (sorted), i.e., wrongly assigned (misclas-
sified) spikes: a waveform was given as element of a cer-
tain single unit but was sorted into another single unit.

• FN false negatives, i.e., spikes wrongly left unsorted: a
waveform was given as element of a certain single unit
but was left unsorted.
• FPp false positives (unsorted), i.e., wrongly assigned (mis-
classified) perturbations: a perturbation signal was classi-
fied as element of a certain single unit.

• TN true negatives, i.e., correctly assigned perturbations: a
perturbation signal was left unsorted.

Thus, a 100 % correct classification contains only TP and
TN. For each data set sorted by a certain method, we count
the corresponding hits (TP, TN) and misses (FP, FPp, FN)
and normalize by the number of all events (spikes and per-
turbations) that are present in both ground truth and the cor-
responding sorting outcome. For each single unit of the
ground truth, we check which unit of the spike sorting out-
come contains the most hits and then take this unit as cor-
rect. Therefore, we always find TP > FP. Based on these
numbers we calculate the following measures. The sensitiv-
ity describes how many spikes out of all spike events are
correctly assigned: sensitivity = TP/(TP + FP + FN) while
the specificity describes how many of the perturbations
are correctly left unsorted: specificity = TN/(TN + FPp).
These analyses were performed using MATLAB (Math-

works Inc., Natick, USA). Differences in the general perfor-
mance of the algorithms were evaluated by comparison to
the ground truth values using the Wilcoxon rank sum test.
Bonferroni's correction was applied to adjust the signifi-
cance level for multiple comparisons. To contrast the 2D
with the 3D version of a method, we used direct compari-
sons (Wilcoxon rank sum test without Bonferroni's correc-
tion), as well as for the comparison of running a method
with a scan versus using the default parameter value.

Quality of spike sorting

We also assess the quality of our sorting results with the fol-
lowing evaluation measures: the percentage of refractory
period violations (rpv), the isolation score (IS), and a mea-
sure characterizing the internal cluster distance (Di) (Fee
et al., 1996b; Joshua et al., 2007; Hill et al., 2011; Einevoll
et al., 2012). The amount of rpv indicates the degree of
multi-unit contamination in a given single unit. We deter-
mine the percentage of inter-spike intervals (ISIs) shorter
than 2 ms. The value of 2 ms lies well inside the range of
the typically assumed ISI limits of 1.5 ms up to 3 ms
(Shinomoto et al., 2003; Moran et al., 2008; Lourens et al.,
2013; Kelley et al., 2018). The IS compares the waveforms
within one single unit to all other potential spikes in the
recording trace based on the normalized and scaled Eucli-
dean distances of their time courses (Joshua et al., 2007).
It provides an estimate of how well a single unit
is separated from all other potential spikes outside its
cluster5: IS = 1 means well separated while IS = 0 indi-
cates overlapping clusters. It thus requires the existence
of potential spikes outside a given cluster. Since EM meth-
ods do not account for unsorted events, we only calculate
the IS when there are at least two single units in a given
trace. We additionally consider the internal cluster distance
Di because it can also be calculated if there is only one unit.



Table 3. Evaluation measures for Fig. 1. Isolations scores IS and per-
centage of refractory period violations (rpv) calculated for the clusters
shown in Fig. 1. The spike sorting methods TMS, KMS, TDEMS, and
VSS yield a variable number of clusters (one to five). If there is only
one single unit (TDEMS in panel B) the IS cannot be calculated.

Unit 1 2 3 4 5

Method Panel refractory period violations (%); IS

TMS A 0.0; 0.9 0.0; 1.0
B 0.2; 0.7 0.2; 0.6 0.3; 0.5

KMS A 0.5, 1.0 0.0; 1.0
B 2.2; 0.6 0.2; 0.8

TDEMS A 0.5; 1.0 0.3; 1.0
B 3.7; /

VSS A 0.0; 0.9 0.0; 0.9
B 0.0; 0.5 0.0; 0.4 0.0; 0.4 0.3; 0.5 0.0; 0.3
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This measure uses the first three PCs of each waveform.
For each single unit, we calculate the mean waveform and
its mean Euclidean distance (in reduced PC space) to all
other spikes inside this cluster (normalized by the maximum
value of the ED or AD data set). To provide an idea of the
meaning of these measures the rvp and IS values of the
clusters shown in Fig. 1 are listed in Table 3.
For a consistent scaling behavior of the latter two quality

measures we consider 1-Di so that high IS and high 1-Di
values indicate well defined clusters.
Firing properties

To investigate the differences in the dynamical properties of
the single units we calculate the mean firing rate and the
local coefficient of variation LV (Shinomoto et al., 2003) in
the ED. The LV characterizes the firing regularity of a single
unit:

LV ¼ 1= n−1ð Þ
Xn−1
i¼1

3 Ti−Tiþ1ð Þ2= Ti þ Tiþ1ð Þ2; ð2Þ

where Ti is the duration of the ith ISI and n the number of
ISIs. LV values enable the following classification
(Shinomoto et al., 2003): regular spiking for LV∈[0,0.5], irre-
gular for LV∈]0.5,1], and bursty spiking for LV > 1. For this
analysis, only single units with more than 80 spikes and less
than 1% rpvs were taken into account to avoid outliers.
RESULTS

We first present the evaluation of the results obtained by
applying the 13 sorting algorithms to the STN recordings
(ED), followed by an investigation of the impact of the sort-
ings on the dynamical properties of the resulting single
units. The ED sorting evaluation leaves us in doubt about
the best method. Therefore, we then evaluate the results
of applying the identical methods to the AD which allows
for an objective ground truth comparison. This procedure
enables us to finally identify the best sorting methods.
Spike sorting of experimental data

We aim at sorting the ED under the additional constraint of
identifying an unsupervised sorting algorithm that enables
a fast, reliable and reproducible extraction of single units.
Our criteria for a successful sorting are: (1) all true spikes
are detected and (2) artifacts and strongly distorted spikes
are not extracted but left unsorted. For a quantitative eva-
luation, we first sort the data using TMS, a manual sorting
method that puts the user in complete control. According
to our criteria it was performed with precise visual inspection
aiming for clearly separated single units that are free of arti-
facts and wrongly classified spikes. During this preproces-
sing procedure, we did not observe a firing rate dependent
spike shape modulation in our STN traces. Hence, we
neither performed a quantitative test to check for spike
amplitude modulations, nor did we single out bursting activ-
ity for specific analyses. In search for an automatic sorting
algorithm, we apply the following unsupervised methods
offered by Plexon: VS and TDEM (both applied with para-
meter scan and default value, respectively, in 2D and 3D,
respectively), as well as KMS and StEMS (both only applied
with scan, in 2D and 3D, respectively). Some exemplary
results are shown in Fig. 1. Here, we assume that the
TMS sorting represents the ground truth, because TMS is
a widely used method (Raz et al., 2000; Levy et al., 2002;
Rutishauser et al., 2006; Steigerwald et al., 2008), subjec-
tively often perceived as the best sorting.
For a quantitative sorting analysis we evaluate the num-

ber of detected single units (Fig. 4A), the percentage of
unsorted events (Fig. 4B), and the percentage of refractory
period violations rpv (Fig. 4C). The number of detected sin-
gle units is highly variable, depending on the sorting
method. TMS and KMS3D detect on average two single
units, TDEM(S) detect on average significantly less units
whereas VSS2D and VSS3D yield significantly more units
than TMS. EM methods do not account for unsorted events,
they do not leave any spike unsorted. KMS methods yield
the least unsorted events, followed by VS(S)2D while VS
(S)3D and TMS show the highest percentage of unsorted
events. TMS, all VS methods and KMS2D and KMS3D
result in less than 1.5% rpv. Methods that do not account
for unsorted events yield more potential spikes per single
unit which results in a higher probability of rpv occurrences.
In the literature, the percentage of tolerated rpv ranges from
0.5% up to 2.5% (Moran et al., 2008; Lourens et al., 2013;
Yang et al., 2014). We consider a single unit to be clean if
it has less than 1% rpvs.
We now compare the assignments of the different sort-

ings to the ground truth given by TMS using the terminology
introduced in Methods: TP, TN, FP, FPp and FN rates
(Fig. 5D). Since TMS aims at ‘clean’ single units it results
in a high TN rate of 39% and thus only 61% TP, see
Fig. 5A. All other methods leave less events unsorted,
resulting in lower TN (black) and accordingly higher FPp
(dark gray) rates. They show a similar amount of misclassi-
fied spikes (FP, light blue) but clearly differ in terms of their
FN (light gray), FPp and TN rates. EM methods, e.g., yield
no TN but only FPp, since they do not allow for unsorted



Fig. 4. Evaluation of ED sorting results. (A, B, C) Bar plots of the average number of detected single
units (A), the percentage of unsorted events US (B) and the percentage of refractory period violations
rpv (C), in dependence of the sorting method. Shown are mean ± SD of the 38 recording traces. Stars
indicate a significant difference (P<.0042 after Bonferroni correction) to the TMS results.
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events, hence the high amount of rvp (cf. Fig. 4C). Com-
pared to TMS (the assumed ground truth), TP rates are
reduced for all other methods, the most for VS methods
due to the high FN rates. KMS yield relatively high TP rates
but very low TN rates because only a very few events are
left unsorted (cf. Fig. 4B).
The sensitivity (i.e., percentage of TP relative to the total

number of true spikes in TMS) and specificity (percentage
of TN relative to the number of unsorted events in TMS)
measures in Fig. 5B1 and Fig. 5B2 summarize these
results. We aim at both a high sensitivity (i.e., correctly clas-
sified spikes) and a high specificity (events correctly left
unsorted). In total, the sensitivity varies between 44% and
80% (Fig. 5B1), and the specificity between 0% and 64%
(Fig. 5B2). All EM methods result in a high sensitivity, but
zero specificity, because they do not
account for unsorted events. KMS
methods also yield a high sensitivity,
but a low specificity. VS methods
result in a high specificity combined
with a rather low sensitivity. Combin-
ing these two measures, VSS3D
seems to provide the best result, since
it shows the highest sensitivity of all
VS methods.
Fig. 5C1 and Fig. 5C2 asses the

sorting quality from another perspec-
tive, independently of the assumed
ground truth:
The isolation score (IS) and the

internal cluster distance (Di) indicate
how well the resulting single units are
clustered (cf. Fig 1). For well sepa-
rated clusters without artifact contami-
nation, IS and 1-Di are close to one.
The large vertical spread indicates a
large variability for all methods, mostly
due to the high variability in the num-
ber of single units detected by each
method, cf. Fig. 4A. TMS yields a
rather low IS although the low percen-
tage of rpv indicates a successful sort-
ing (cf. Fig. 4C). The high IS values for
TDEM methods do not indicate well
defined clusters due to a high amount
of rpv (cf. Fig. 4C). They are simply a
consequence of the fact that the IS
can only be calculated when there is
more than one single unit which is not
often the case, cf. Fig. 4A. The Di
measure considers all single units
and indeed indicates poorly defined
clusters. KMS methods yield relatively
high IS and 1-Di values and a reason-
able amount of rpv. VS methods show
relatively high 1-Di values but compar-
ably low IS scores. Together with the
high FN rate (Fig. 5A) this indicates
that many spikes are left unsorted.
We assessed the time consumption of all methods that
account for unsorted events by applying them to five ran-
domly chosen STN channels of 31.5 s ± 9.2 s length. The
method with the highest time consumption is clearly manual
TMS which needs 269.8 s ± 76.2 s, including the time to
asses the number of clusters, to define the templates, visual
inspection of results in feature space, etc. VS2D and VS3D
need 0.5 s ± 0.1 s and 0.6 s ± 0.2 s, respectively, VSS2D
and VSS3D need 2.5 s ± 0.6 s and 2.7 s ± 0.3 s, respec-
tively, while KMS2D and KMS3D need 2.0 s ± 0.6 s and
2.3 s ± 0.5 s, respectively.
In summary, we find that VSS3D agrees best with

the TMS results, suggesting that VSS3D is the best
sorting method. However, a detailed comparison of the
assignment of individual spikes indicates considerable



Fig. 5. Evaluation of ED sorting results with ground truth (TMS) comparison. (A) Stacked bar plot showing the percentage of correct and wrong assign-
ments of ED spikes in dependence of the sorting methods using TMS as ground truth reference: TP indicate correctly classified spikes, FP misclassified
spikes, FN spikes left unsorted, FPp indicate unsorted events of TMS that are classified as spikes, and TN indicates unsorted events of TMS that are also
left unsorted by the other methods. (B1, B2) Sensitivity and specificity measure in dependence of the sorting methods (mean ± SD of all recording traces).
(C1, C2) Cluster quality measures IS and 1-Di (Di values normalized to their maximum) applied to ED: each dot represents the value obtained for one
single unit in the 38 recording traces. Horizontal lines indicate the average over all single units, vertical lines indicate the corresponding SD. (D) Summary
of TP, TN, FP and FN notations and definition of sensitivity and specificity.
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differences: The FPp, FP, and FN rates for VSS3D sum up
to approximately 40%. Other issues are the low IS score for
both TMS and VSS3D, the higher TP rate for KMS com-
pared to VSS3D, as well as the fact that we might lose a
lot of true spikes when using TMS or VSS3D due to 39%
unsorted events. Moreover, all VS and KMS methods
detect more single units compared to TMS. In the end, we
are left with the suspicion that the subjective TMS sorting
and thus VSS3D might, after all, not be the best methods
to sort our data. We therefore apply all methods again to



Fig. 6. Variability in the ED firing statistics. Differences in firing patterns characterized by (A) firing
rate and (B) local coefficient of variation LV. The color code indicates the number of detected single
units SU normalized to the total number of detected single units per method (binned and averaged
over all traces). Mean firing rate and mean LV (averaged over all single units) are indicated by white
dots. (C) Amount of single units with regular (LV<0.5), irregular (0.5≤LV≤1.0) and bursty (LV>1.0)
firing patterns.
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AD which provides an objectively given ground truth to
compare with.
Impact of spike sorting methods on single unit
firing properties

To characterize the differences in the firing patterns of all
detected single units that result from using different sorting
algorithms, we calculate the firing rate and the local
coefficient of variation for each single
unit. Fig. 6A and Fig. 6B show the corre-
sponding distributions obtained by bin-
ning and averaging across all STN
recording traces. Each entry is averaged
over all single units identified in the ED.
Fig. 6A shows clear discrepancies in
the firing rate distributions. This is a con-
sequence of the distinct number of sin-
gle units obtained from the different
methods, as well as of the amount of
unsorted events (cf. Fig. 4). Single units
obtained with TMS and VS show lower
frequencies (maximally up to 30 Hz),
while KMS and StEM yield single units
with up to 40 Hz. Single units obtained
with TDEM methods have the highest fir-
ing rates (60 Hz) since these methods
detect mostly one single unit and leave
no events unsorted.
Another characteristic property of spiking

activity is the LV which quantifies the regu-
larity in neuronal firing (Fig. 6B). We again
observe method-dependent deviations,
based on the variable number of single
units: the lower the number of detected
single units, the more regular are the sub-
sequent spike trains. When classifying the
single units according to their LV value in
regular (LV < 0.5), irregular (0.5≤LV≤
1.0), and bursty (LV > 1) firing neurons
(Shinomoto et al., 2003; Steigerwald
et al., 2008; Lourens et al., 2013) we find
clear differences (6C): TDEM methods
yield more regular and less bursty single
units (less than 5%) whereas VS2D and
VS3D result in less regular and more
bursty single units (up to 25%).
Spike sorting of artificial data

The ED results left us undecided con-
cerning the best sorting method. In need
of an objective ground truth we now
evaluate the results of sorting artificially
generated data. For the AD we know
the correct spike and perturbation
assignments, the latter representing arti-
facts to be left unsorted. Please note that
there are a few overlapping spikes from
distinct single units. If their shapes are seriously distorted
(large overlap) they are most likely classified as extra
unsorted events.
Fig. 7 presents the first part of the sorting results obtained

for AD sets with varying spike pair similarity. For each set
we again evaluate the resulting number of single units
(Fig. 7A), the percentage of unsorted events (Fig. 7B) and
rpv (Fig. 7C). The ground truth is shown on the very left of
the panels. For setI and setII (distinct spike pairs), the



Fig. 7. Evaluation of AD sorting results. Bar plots of the sorting results in dependence of the sortingmethods (color coded spike pair similarity in setI to setIV):
(A) average number of detected single units SU, (B) percentage of events left unsorted, and (C) percentage of refractory period violations (rpv). Shown are mean ±
SD of the 10 realizations, stars indicate a significant difference compared to the ground truth values (P<.039 after Bonferroni correction).
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number of resulting single units is mostly quite similar and
close to the ground truth. For setIII and setIV (similar spike
pairs) all TDEM algorithms detect significantly fewer units,
whereas StEMS methods find significantly more units, simi-
lar to KMS and VSS (Fig. 7A). These observations are simi-
lar to the corresponding ED results (cf. Fig. 4A).
EM algorithms do not account for unsorted events and

KMS methods leave only a very few events unsorted while
VS methods yield many more unsorted events than present
in the ground truth (15% to 40% compared to 10%, see
Fig. 7B). The percentage of unsorted events resulting from
TMS is mostly close to the ground truth, only setIV yields
more than 10% unsorted events due to a nearly impossible
distinction between perturbations and spikes. The major dif-
ference to the ED results is the small amount of unsorted
events in the ground truth: Here, unsorted events represent
artifacts whereas the large amount of unsorted events in the
ED are mostly spikes that were left unsorted because no
clear assignment could be made.
Most methods induce a significant percentage of rpv

(Fig. 7C). The percentage of rpv is larger the more similar
the embedded spike pairs are, as it is more difficult to sepa-
rate similar spikes which induces sorting errors. As
observed for the ED, we find that methods that do not
account for unsorted events result in a high percentage of
rpv, e.g., TDEM methods with more than 3% rpv for setIII
and setIV. In contrast, VS methods yield mostly less than
1% rpv.
Fig. 8A1 to A4 show the second part of the AD results: the

TP, TN, FP, FPp and FN assignments made for the four
sets. The 100% correct ground truth assignment consists
of two parts: 90% TP, i.e., correctly classified spikes and
10% TN, i.e., perturbations that were correctly left unsorted.
Concerning the spike events in setI, most methods per-

form quite well, yielding a TP rate close to 90%. Only VS
(S) methods leave 8% (2D) to 15% (3D) of spikes unsorted
which results in a comparably high FN and low TP rate.
However, as expected from the ED results, VS(S) methods
also correctly leave most perturbations unsorted (TN close
to 10%). KMS, StEMS, and TDEMS yield generally high
FPp and low FN rates: many perturbations are wrongly clas-
sified as spikes and only a few or no spikes are left
unsorted. FN, FPp and TN rates change only slightly with
increasing spike pair similarity (setI to setIV) since perturba-
tions are identical in all sets. The number of misclassified
spikes, however, clearly increases with increasing spike



Fig. 8. Evaluation of AD sorting results with ground truth comparison. (A1-A4) Stacked bar plots showing the average percentage of correct and
wrong assignments of spikes and perturbations in dependence of the sorting methods: TP indicates correctly classified spikes, FP misclassified spikes,
FN spikes wrongly left unsorted, FPp indicates perturbations wrongly classified as spikes, and TN perturbations correctly left unsorted (cf. D). Stars indi-
cate a significant difference to the ground truth values (P<.039 after Bonferroni correction). (B1, B2) Sensitivity and specificity measures in dependence of
the sorting methods (mean ± SD of the 10 realizations). (C1, C2) Cluster quality measures IS and 1-Di (Di values normalized to their maximum) in depen-
dence of the sorting methods: each dot represents the value obtained for one single unit. Horizontal lines indicate the average over all single units in 10
realizations, vertical lines indicate the corresponding SD. The color code in B1, B2, C1, and C2 represents the spike pair similarity. (D) Summary of TP,
TN, FP and FN notations and definition of sensitivity and specificity.
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pair similarity: In setII, TDEM(S)3D already show 30% FP
due to collapsing the spikes from two single units into one
single unit while all other methods yield 2% to 6% FP
(Fig. 8A2). For setIII, all TDEM methods yield approximately
45% FP while most other methods result in fewer FP (5% to
15%) and correspondingly higher TP rates (60% to 80%).
Only VS3D yields less than 50% TP due to the relatively
high percentage of 20% FN.
Fig. 8C1 and Fig. 8C2 show that the cluster quality mea-

sures IS and Di mostly reflect the results obtained by the



Fig. 9. AD sorting results in dependence of the amount of perturba-
tions. Shown are the sum of TP and TN rate of the AD setII and setIII for
the sorting methods that account for unsorted events (ground truth is at
one). Filled circles indicate the proportion given in the AD, i.e., 90%
spikes and 10% perturbations. Open circles indicate an estimate calcu-
lated by re-normalization assuming 50% spikes and 50% perturbations.
The color code represents the spike pair similarity.

Jeyathevy Sukiban et al. / Neuroscience 414 (2019) 168–185 181
above ground truth comparison: the more similar the spike
pairs, the lower the TP rate and the average IS. This agree-
ment holds only partially for the Di. If the number of identi-
fied single units is large, the resulting clusters are small
and naturally have a small internal distance, e.g., the large
1-Di values for VSS in setIV (Fig. 8C2, cf. Fig. 7A). Thus,
IS and Di have to be considered in relation to the number
of single units. VS methods show relatively high 1-Di values
but low TP rates, an effect of the high FN rates which bear less
influence on the Di measure (Joshua et al., 2007). For the
TDEM(S) methods applied to setII, however, the Di results
match the TP rates better than the IS results.
We expected that using more PCs yields better results.

However, the significant (P<.05) differences in the percen-
tage of unsorted events and TP between VS(S)2D and VS
(S)3D indicate the opposite: the 2D results are closer to
the ground truth. Still, VS(S)3D yield significantly less rpv
compared to VS(S)2D, but this is simply the consequence
of leaving many events unsorted. Similarly, some of the
TDEM(S)2D results (number of units and TP rate for setII)
are significantly closer to the ground truth than the TDEM
(S)3D results. Therefore we conclude, that VS and TDEM
work better in 2D as compared to 3D feature space.
The differences between the results obtained with and

without automatic scan are inconsistent and only pertain to
VS methods. For example, VSS3D versus VS3D yields
mostly significantly (P<.05) different values for the number
of single units, unsorted events, and TP where the results
obtained with scan are closer to the ground truth for the
number of single units and unsorted events but without
scan, the TP rates are closer to the ground truth. Thus, we
see no advantage in applying an automatic parameter scan.
Fig. 8B1 and Fig. 8B2 summarize our findings. The sensi-

tivity (normalized TP rate) clearly decreases with increasing
spike similarity, independently of the sorting method. The
more similar a spike pair is, the harder is the task to distin-
guish the spikes and to sort them into different units. For
setIV, all sensitivity values are close to 50% indicating that
the sorting task is so difficult that the success rates are
bound to be close to chance level. However, there is no
clear dependency of the specificity (normalized TN rate)
on the task difficulty. Since EM methods do not account
for unsorted events, their specificity is zero. As expected
from the ED results, VS methods show a high specificity
but their sensitivity is rather low. In contrast, KMS and
TMS show again, as observed for the ED, a low specificity
while their sensitivity is relatively high. For the AD, we
conclude that KMS and VS(S)2D yield the best compro-
mise between high sensitivity, i.e., many correctly classi-
fied spikes, and high specificity, i.e., many identified
perturbations. Hence, the doubts about VSS3D being the
best sorting method for the ED are justified. Fig. 9 shows
the so-called success rate, i.e., the sum of TP and TN rates
(filled circles) for AD sets II and III with 90% spikes and
10% perturbations. It shows that TMS and KMS are the
most successful methods, followed by VS2D. The open
circles are an estimate obtained via re-normalization with
changed proportions for spikes (50%) and perturbations
(50%).
In this case VS methods show a higher success rate than
KMS and TMS. Thus, the best method to sort the data
depends on the amount of perturbations (i.e., artifacts)
which are to be left unsorted.
DISCUSSION

The classification of multi-unit activity into single units is an
important prerequisite for many types of data analysis, e.g.,
neuronal correlations, spike-LFP phase coupling, or tuning
properties of single cells. The sorting evaluation procedure
described in this study is generally applicable. We provide a
comparative analysis that depicts and characterizes the differ-
ences in the results of a selected set of sorting algorithms,
applied to ED and AD with known ground truth, respectively.
Comparing the results of the ED to the four AD sets we find that
the task difficulty in theED ismost similar to setIII of the AD, i.e.,
a hard task due to similar spike shapes.
We evaluate sorting methods provided by the ‘Plexon Off-

line Sorter’, a frequently used software package (Shinomoto
et al., 2003; Moran et al., 2008; Schrock et al., 2009; Shima-
moto et al., 2013; Yang et al., 2014; Kelley et al., 2018;
Lipski et al., 2018). Aiming for an objective comparison with-
out any user intervention, we focus on algorithms that either
run with a given default parameter value or in combination
with a parameter scan, always using PC as features. We
additionally use supervised TMS in order to contrast our
results with this widely-used (Raz et al., 2000; Levy et al.,
2002; Rutishauser et al., 2006; Steigerwald et al., 2008)
method. The user intervention in such supervised methods
is time consuming, it inherently includes a human bias
(Wood et al., 2004) and it typically requires a parameter
and/or a feature selection optimization (Wild et al., 2012).
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Highly variable sorting results for different
methods

In agreement with Brown et al. (2004); Wild et al. (2012);
Knieling et al. (2016) we show that the results obtained by
using different sorting methods differ significantly, in both
ED and AD. There are deviations in the number of detected
single units, in the percentage of unsorted events and rpv,
as well as differences in the cluster quality measures. The
IS is typically used to select well isolated single units, e.g.,
by rejecting clusters with IS <0.7 (Joshua et al., 2007; Lou-
rens et al., 2013; Deffains et al., 2014). The percentage of
tolerated rpv is typically assumed to be 0.5% up to 2.5%
(Moran et al., 2008; Lourens et al., 2013; Yang et al.,
2014) for refractory periods assumed to be 1 ms up to 4
ms (Bar-Gad et al., 2001a; Moran et al., 2008; Eden et al.,
2012; Lourens et al., 2013; Shimamoto et al., 2013; Kelley
et al., 2018). Given this wide range of values, Knieling
et al. (2016) suggests that 1 ms could be the absolute
refractory period while larger values pertain to the relative
refractory period. The application of these measures to the
AD verifies an increased occurrence of well isolated single
units if the corresponding waveforms are distinct and thus
easy to separate.
Most extracellular recordings (in particular STN data, see

Introduction) contain perturbations, e.g., movement or
speech artifacts, and distorted spikes. Therefore, it is a clear
disadvantage of EM methods that they do not leave any
event unsorted. Even though such perturbations are often
removed during a preprocessing procedure (cf. Methods),
a considerable percentage is typically not identified. For
example, approximately 8 of 10% perturbations survived
the preprocessing of our AD. Consequently, the resulting
single units of all EM methods are contaminated, resulting
in high FPp rates and a high amount of rvp. Among the
EM methods, StEM yields the highest sensitivity and the
fewest rpv. Hill et all. (Hill et al., 2007; Hill et al., 2011) dis-
cuss that the assumption of Gaussian distributions in StEM
may be inappropriate for spike clusters due to spike shapes
varying with time. The latter can be caused by bursting
activity which is a prominent feature in STN recordings
(Hutchison et al., 1998; Beurrier et al., 1999; Chibirova
et al., 2005; Steigerwald et al., 2008). Still, StEM works
comparably well for our data, possibly due to the short
recoding time and relatively constant spike shapes.
VS algorithms yield the most specific sorting results, they

leave nearly all perturbations unsorted. Yet, all VS methods
also leave a considerable amount of spikes unsorted which
decreases their sensitivity. For the AD, only VS(S)2D meth-
ods provide a good compromise between specificity and
sensitivity. A previous study (Kretzberg et al., 2009) details
that TDEM performs better than VS in clustering artificial
data adapted to resemble extracellular recordings from a
turtle's retina. Our AD, however, explicitly contains perturba-
tions. In such a complex case, as typical for STN data
(Lewicki, 1998), the non-parametric approach taken in the
VS(S)2D might provide an advantage because the valleys
separating the single units do not have to obey a specific
parametric form (Fukunaga, 1990; Hill et al., 2011).
KMS is the most sensitive algorithm, only a few spikes are
left unsorted and the amount of misclassifications is accep-
table. Yet, it detects only a very few perturbation and thus
has a low specificity. There is no significant difference
between KMS2D and KMS3D. At first sight, one expects
that more information (i.e., 3D) yields a better performance
but VS and TDEM perform better in 2D feature space than
in 3D. The additional dimension may capture the variability
in the background noise (Lewicki, 1998; Bishop, 2006) and
thus lead to misclassifications.
Another important point for selecting an appropriate sort-

ing method is the type of analysis that the user aims to per-
form with the resulting single units. Missed spikes (FN), for
example, reduce the significance of spike synchrony stron-
ger than misclassified spikes (FP) (Pazienti and Grün,
2006). Thus, for the analysis of neuronal correlation in
STN recordings (Weinberger et al., 2006; Moran et al.,
2008) KMS is a better choice than VS. Another example
are tuning curves, i.e., the distributions of neuronal firing
rates with respect to a movement (Georgopoulos et al.,
1982) or stimulus (Hubel and Wiesel, 1959) direction. In this
case, misclassified events (spikes, perturbations) can
induce incorrect multimodal distributions while missed
spikes lead to an underestimation of the true firing rates
(Hill et al., 2011).
Dynamical properties of single units and their
relation to spike sorting

Typically, the average firing rates measured in the STN of
Parkinson patients are reported to range from 25 Hz up to
50 Hz (Benazzouz et al., 2002; Steigerwald et al., 2008;
Remple et al., 2011; Lourens et al., 2013; Deffains et al.,
2014). We observe rates ranging from 14 Hz up to 39 Hz,
purely depending on the sorting algorithm. Thus, we find
lower rates than reported in the literature which can have
several reasons: the specific disease type (tremor dominant
versus akinetic-rigid), behavioral tasks (passive or active or
no limb movements) during the recording (Rodriguez-Oroz
et al., 2001), disease duration (Remple et al., 2011), as well
as the exact recording place (Deffains et al., 2014). The
method-dependent dispersion of average firing rate values
observed here is 25 Hz which is identical to the rate disper-
sion reported in the literature. Similarly, the amount of regu-
lar, irregular, and bursty single units strongly depends on
the sorting method. These three firing patterns have been
demonstrated in the physiological state of human STNs.
The most common one is irregular firing in up to 52% of
the cells, followed by 36% bursting activity and regular firing
observed in 12% of the cells in essential tremor patients
(Steigerwald et al., 2008). In the parkinsonian state, the per-
centage of bursting cells strongly increases to up to 70%
(Bergman et al., 1994; Steigerwald et al., 2008). Thus,
bursting single units are a characteristic feature of STN
recordings in PD patients (Beurrier et al., 1999; Levy et al.,
2001; Chibirova et al., 2005; Lourens et al., 2013) and are
reported to vary from 5% to 25% (Chibirova et al., 2005) or
15% to 34% (Lourens et al., 2013), depending on the exact
recording site. We find a similar amount of variability,
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namely 7% to 25% bursting single units, solely ascribed to
the sorting method.
Recordings with intervals of high multi-unit firing are a par-

ticular challenge in spike sorting (Lewicki, 1998; Einevoll
et al., 2012). The most difficult case is several bursting sin-
gle units registered on one electrode. Such recordings typi-
cally comprise overlapping spikes which are hard to cluster
due to distorted spike shapes (Lewicki, 1998; Harris et al.,
2000; Bar-Gad et al., 2001b). Another issue of bursting
activity is a possible spike amplitude reduction over time
(Fee et al., 1996b; Quirk and Wilson, 1999; Harris et al.,
2000). The latter can be consequence of sustained firing,
but spike shape modulations may also occur during elec-
trode drifts (Fee et al., 1996b; Quirk and Wilson, 1999;
Knieling et al., 2016). In such cases, the spike amplitude
should not be used as major feature for the clustering
(Harris et al., 2000), nor should one expect circular but
rather elongated clusters in PC feature space (Fee et al.,
1996a; Fee et al., 1996b). We do not directly consider these
issues since a visual inspection of the STN data did not
show spike shape modulations. This is most likely related
to the relatively low average firing rates in our data, as well
as to our short recording times. Our AD, however, includes
overlapping spikes which are most likely classified as per-
turbation signals. Moreover, our AD contains spike pairs
with a controlled difference in amplitudes, representing the
similarity categories. Their effect on the sorting results is
roughly identical for all methods. Only for the assumption
of Gaussian distributions (TDEM versus StEM methods)
we observe a tendency to collapse similar spikes into one
single cluster. Such tendencies presumably contribute to
the diversity in the dynamical properties of STN cells
reported above, especially in the case of high firing rates.
We restrict ourselves to the unsupervised methods offered

by the OFS and we do not evaluate the sorting performance
in different firing regimes. In terms of artificial data, an analysis
focusing on the latter is principally straightforward, but beyond
the scope of this study. Modern methods are often particularly
suited for dense recoding arrays (Rossant et al., 2016; Chung
et al., 2017; Yger et al., 2018) which, among many other
advantages, enable a better handling of overlapping spikes.
Many of these and other methods involve parameter and/or
feature optimization which is often automatized (Fee et al.,
1996b; Quiroga et al., 2004; Wild et al., 2012; Chung et al.,
2017), but may also require user intervention, for example dur-
ing cluster curation (Rossant et al., 2016; Yger et al., 2018).
Typically, spike sorting is performed in the time and/or fre-
quency domain (Lewicki, 1998; Einevoll et al., 2012; Quiroga,
2012; Wild et al., 2012). Here, the issue related to bursting
cells can be accounted for by using the ISI distribution
(Delescluse and Pouzat, 2006) or by assuming non-
Gaussian distributions (Fee et al., 1996a). Another possibility
is presented in Aksenova et al. (2003); Chibirova et al.
(2005); Caro-Martin et al. (2018), namely template matching
(TMPS) or K-means clustering with feature optimization (K-
TOPS) in phase space, i.e. using spike derivative-based fea-
tures. Chibirova et al. (2005) demonstrate a successful appli-
cation of their unsupervised TMPS to STN recordings from
PD patients.
In summary, different spike sorting approaches yield
highly variable results. In order to recommend a sorting
method we distinguish between two cases: ‘clean’ and
‘noisy’ data. With ‘clean’ we mean that a first visual inspec-
tion of the data indicates that there are only a few artifacts
and distorted spike shapes – or the given perturbations
can easily be identified and removed otherwise. With ‘noisy
data’ we mean frequent perturbations that are difficult to
identify and to remove. If the data is relatively clean we
recommend to use the KMS method since it offers the high-
est success rate (Fig. 9) due to a high sensitivity (Fig. 8B1)
and relatively well isolated clusters. If the data is particularly
noisy and if missed spikes are less relevant for the subse-
quent analysis, VS(S)2D is probably a better choice. It com-
bines a high specificity with an intermediate sensitivity
(Fig. 8B1,B2) so that its success rate is higher in case of
many perturbations (Fig. 9) and yields very few rpv.
The procedure described here could generally serve as a

pre-analysis step to select the appropriate sorting method
for a specific data set: One first generates an AD set with
known ground truth which is adapted to the experimental
recordings. If necessary, bursts of spikes and spike shape
modulations can be included. The sorting algorithms in
question are then applied to the AD and the results are eval-
uated in relation to the ground truth. Finally, one selects the
method with the best results and applies it to the experimen-
tal recordings. It is elementary enough to be generally
applicable but yields results specific to the given data. Our
results clearly show the importance of a careful spike sort-
ing method selection.
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