000863868 001__ 863868
000863868 005__ 20240709074310.0
000863868 0247_ $$2doi$$a10.1175/JAS-D-19-0040.1
000863868 0247_ $$2ISSN$$a0022-4928
000863868 0247_ $$2ISSN$$a0095-9634
000863868 0247_ $$2ISSN$$a1520-0469
000863868 0247_ $$2ISSN$$a2163-5374
000863868 0247_ $$2Handle$$a2128/22743
000863868 0247_ $$2altmetric$$aaltmetric:63569986
000863868 0247_ $$2WOS$$aWOS:000482038400001
000863868 037__ $$aFZJ-2019-03839
000863868 041__ $$aEnglish
000863868 082__ $$a550
000863868 1001_ $$0P:(DE-HGF)0$$aStephan, Claudia Christine$$b0$$eCorresponding author
000863868 245__ $$aIntercomparison of gravity waves in global convection-permitting models
000863868 260__ $$aBoston, Mass.$$bAmerican Meteorological Soc.$$c2019
000863868 3367_ $$2DRIVER$$aarticle
000863868 3367_ $$2DataCite$$aOutput Types/Journal article
000863868 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568273453_2892
000863868 3367_ $$2BibTeX$$aARTICLE
000863868 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863868 3367_ $$00$$2EndNote$$aJournal Article
000863868 520__ $$aLarge uncertainties remain with respect to the representation of atmospheric gravity waves (GWs) in General Circulation Models (GCMs) with coarse grids. Insufficient parameterizations result from a lack of observational constraints on the parameters used in GW parameterizations as well as from physical inconsistencies between parameterizations and reality. For instance, parameterizations make oversimplifying assumptions about the generation and propagation of GWs. Increasing computational capabilities now allow GCMs to run at grid spacings that are sufficiently fine to resolve a major fraction of the GW spectrum. This study presents the first intercomparison of resolved GW pseudo-momentum fluxes (GWMFs) in global convection-permitting simulations and those derived from satellite observations. Six simulations of three different GCMs are analyzed over the period of one month of August to assess the sensitivity of GWMF to model formulation and horizontal grid spacing. The simulations reproduce detailed observed features of the global GWMF distribution, which can be attributed to realistic GWs from convection, orography and storm tracks. Yet, the GWMF magnitudes differ substantially between simulations. Differences in the strength of convection may help explain differences in the GWMF between simulations of the same model in the summer low latitudes where convection is the primary source. Across models, there is no evidence for a systematic change with resolution. Instead, GWMF is strongly affected by model formulation. The results imply that validating the realism of simulated GWs across the entire resolved spectrum will remain a difficult challenge not least because of a lack of appropriate observational data.
000863868 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000863868 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x1
000863868 588__ $$aDataset connected to CrossRef
000863868 7001_ $$0P:(DE-Juel1)169715$$aStrube, Cornelia$$b1
000863868 7001_ $$0P:(DE-HGF)0$$aKlocke, Daniel$$b2
000863868 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b3
000863868 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b4
000863868 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b5
000863868 7001_ $$0P:(DE-HGF)0$$aSchmidt, Hauke$$b6
000863868 773__ $$0PERI:(DE-600)2025890-2$$a10.1175/JAS-D-19-0040.1$$gp. JAS-D-19-0040.1$$n9$$p2739–2759$$tJournal of the atmospheric sciences$$v76$$x1520-0469$$y2019
000863868 8564_ $$uhttps://juser.fz-juelich.de/record/863868/files/jas-d-19-0040.1.pdf$$yPublished on 2019-08-21. Available in OpenAccess from 2020-02-21.
000863868 909CO $$ooai:juser.fz-juelich.de:863868$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000863868 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169715$$aForschungszentrum Jülich$$b1$$kFZJ
000863868 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b3$$kFZJ
000863868 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b4$$kFZJ
000863868 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b5$$kFZJ
000863868 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000863868 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x1
000863868 9141_ $$y2019
000863868 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863868 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863868 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000863868 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ATMOS SCI : 2017
000863868 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863868 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863868 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863868 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863868 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863868 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863868 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863868 920__ $$lyes
000863868 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000863868 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000863868 9801_ $$aFullTexts
000863868 980__ $$ajournal
000863868 980__ $$aVDB
000863868 980__ $$aUNRESTRICTED
000863868 980__ $$aI:(DE-Juel1)IEK-7-20101013
000863868 980__ $$aI:(DE-Juel1)JSC-20090406
000863868 981__ $$aI:(DE-Juel1)ICE-4-20101013