000863917 001__ 863917
000863917 005__ 20210130002351.0
000863917 0247_ $$2doi$$a10.1371/journal.pone.0219708
000863917 0247_ $$2Handle$$a2128/22508
000863917 0247_ $$2altmetric$$aaltmetric:63686139
000863917 0247_ $$2pmid$$apmid:31314801
000863917 0247_ $$2WOS$$aWOS:000482331900039
000863917 037__ $$aFZJ-2019-03880
000863917 041__ $$aEnglish
000863917 082__ $$a610
000863917 1001_ $$00000-0003-0180-9445$$aTomasova, Lea$$b0$$eCorresponding author
000863917 245__ $$aAdvanced 2D/3D cell migration assay for faster evaluation of chemotaxis of slow-moving cells
000863917 260__ $$aSan Francisco, California, US$$bPLOS$$c2019
000863917 3367_ $$2DRIVER$$aarticle
000863917 3367_ $$2DataCite$$aOutput Types/Journal article
000863917 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563458599_18333
000863917 3367_ $$2BibTeX$$aARTICLE
000863917 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863917 3367_ $$00$$2EndNote$$aJournal Article
000863917 520__ $$aConsidering the essential role of chemotaxis of adherent, slow-moving cells in processes such as tumor metastasis or wound healing, a detailed understanding of the mechanisms and cues that direct migration of cells through tissues is highly desirable. The state-of-the-art chemotaxis instruments (e.g. microfluidic-based devices, bridge assays) can generate well-defined, long-term stable chemical gradients, crucial for quantitative investigation of chemotaxis in slow-moving cells. However, the majority of chemotaxis tools are designed for the purpose of an in-depth, but labor-intensive analysis of migratory behavior of single cells. This is rather inefficient for applications requiring higher experimental throughput, as it is the case of e.g. clinical examinations, chemoattractant screening or studies of the chemotaxis-related signaling pathways based on subcellular perturbations. Here, we present an advanced migration assay for accelerated and facilitated evaluation of the chemotactic response of slow-moving cells. The revised chemotaxis chamber contains a hydrogel microstructure–the migration arena, designed to enable identification of chemotactic behavior of a cell population in respect to the end-point of the experiment. At the same time, the assay in form of a microscopy slide enables direct visualization of the cells in either 2D or 3D environment, and provides a stable and linear gradient of chemoattractant. We demonstrate the correctness of the assay on the model study of HT-1080 chemotaxis in 3D and on 2D surface. Finally, we apply the migration arena chemotaxis assay to screen for a chemoattractant of primary keratinocytes, cells that play a major role in wound healing, being responsible for skin re-epithelialization and a successful wound closure. In direction of new therapeutic strategies to promote wound repair, we identified the chemotactic activity of the epithelial growth factor receptor (EGFR) ligands EGF and TGFα (transforming growth factor α).
000863917 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000863917 588__ $$aDataset connected to CrossRef
000863917 7001_ $$0P:(DE-HGF)0$$aGuttenberg, Zeno$$b1
000863917 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b2$$ufzj
000863917 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b3$$ufzj
000863917 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0219708$$gVol. 14, no. 7, p. e0219708 -$$n7$$pe0219708 -$$tPLOS ONE$$v14$$x1932-6203$$y2019
000863917 8564_ $$uhttps://juser.fz-juelich.de/record/863917/files/journal.pone.0219708.pdf$$yOpenAccess
000863917 8564_ $$uhttps://juser.fz-juelich.de/record/863917/files/journal.pone.0219708.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863917 909CO $$ooai:juser.fz-juelich.de:863917$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000863917 9101_ $$0I:(DE-588b)5008462-8$$60000-0003-0180-9445$$aForschungszentrum Jülich$$b0$$kFZJ
000863917 9101_ $$0I:(DE-HGF)0$$60000-0003-0180-9445$$aExternal Institute$$b0$$kExtern
000863917 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b2$$kFZJ
000863917 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b3$$kFZJ
000863917 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000863917 9141_ $$y2019
000863917 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863917 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000863917 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000863917 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863917 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000863917 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2017
000863917 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000863917 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000863917 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863917 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863917 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863917 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863917 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863917 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000863917 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863917 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000863917 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863917 920__ $$lyes
000863917 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0
000863917 9801_ $$aFullTexts
000863917 980__ $$ajournal
000863917 980__ $$aVDB
000863917 980__ $$aUNRESTRICTED
000863917 980__ $$aI:(DE-Juel1)ICS-7-20110106
000863917 981__ $$aI:(DE-Juel1)IBI-2-20200312