001     863975
005     20240712084620.0
024 7 _ |2 doi
|a 10.1080/07366299.2019.1651039
024 7 _ |2 WOS
|a WOS:000483877000001
037 _ _ |a FZJ-2019-03891
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-Juel1)168262
|a Klass, Larissa
|b 0
|u fzj
245 _ _ |a Evaluation of the hydrophilic complexant N,N,N’,N’-tetraethyldiglycolamide (TEDGA) and its methyl-substituted analogues in the selective Am(III) separation
260 _ _ |a Philadelphia, PA
|b Taylor & Francis
|c 2019
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1576483933_30943
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a N,N,N’,N’-tetraethyldiglycolamide (TEDGA) is used in the French EXAm (extraction of americium) process to separate Am(III) from Cm(III) and Ln(III). In this study, the complexation behavior of TEDGA towards actinides(III) and lanthanides(III) was compared to its methyl-substituted derivatives Me-TEDGA and Me2-TEDGA under experimental conditions applying to the EXAm process. Using the EXAm solvent, 0.6 mol/L N,N’-dimethyl-N,N’-dioctyl-hexylethoxymalonamide (DMDOHEMA) and 0.45 mol/L bis(2-ethylhexyl)-phosphoric acid (HDEHP), An(III) and Ln(III) distribution ratios increase in the order TEDGA < Me-TEDGA < Me2-TEDGA. This is explained by differences in the strength of complexation in the aqueous phase: Conditional stability constants for the formation of [Cm(DGA)x]3+ complexes decrease in the order TEDGA > Me-TEDGA > Me2-TEDGA, as shown by time-resolved laser fluorescence spectroscopy (TRLFS). TRLFS measurements verified the exclusive existence of [Cm(DGA)3]3+ complexes in the aqueous phase. Both the homoleptic [Cm(DMDOHEMA)n]3+ and the heteroleptic [Cm(DGA)x(DMDOHEMA)y]3+ complexes were detected in the organic phase, as postulated in the literature.[14]
536 _ _ |0 G:(DE-HGF)POF3-161
|a 161 - Nuclear Waste Management (POF3-161)
|c POF3-161
|f POF III
|x 0
536 _ _ |0 G:(EU-Grant)323282
|a SACSESS - Safety of ACtinide Separation proceSSes (323282)
|c 323282
|f FP7-Fission-2012
|x 1
700 1 _ |0 P:(DE-Juel1)130438
|a Wilden, Andreas
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)176187
|a Kreft, Fabian
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Wagner, Christoph
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Geist, Andreas
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Panak, Petra J.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Herdzik-Koniecko, Irena
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Narbutt, Jerzy
|b 7
700 1 _ |0 P:(DE-Juel1)130383
|a Modolo, Giuseppe
|b 8
|e Corresponding author
|u fzj
773 _ _ |0 PERI:(DE-600)2043256-2
|a 10.1080/07366299.2019.1651039
|n 5
|p 297-312
|t Solvent extraction and ion exchange
|v 37
|x 0736-6299
|y 2019
856 4 _ |u https://juser.fz-juelich.de/record/863975/files/Kla%C3%9F%202019%20Solvent%20Extr.%20Ion%20Exch.SI.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/863975/files/Kla%C3%9F%202019%20Solvent%20Extr.%20Ion%20Exch_.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/863975/files/Kla%C3%9F%202019%20Solvent%20Extr.%20Ion%20Exch_.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:863975
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)168262
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130438
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)176187
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130383
|a Forschungszentrum Jülich
|b 8
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-161
|1 G:(DE-HGF)POF3-160
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Nukleare Entsorgung und Sicherheit sowie Strahlenforschung
|v Nuclear Waste Management
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SOLVENT EXTR ION EXC : 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21