000863978 001__ 863978
000863978 005__ 20240711101542.0
000863978 0247_ $$2doi$$a10.3390/en12142825
000863978 0247_ $$2Handle$$a2128/22532
000863978 0247_ $$2WOS$$aWOS:000478999400181
000863978 037__ $$aFZJ-2019-03894
000863978 082__ $$a620
000863978 1001_ $$0P:(DE-Juel1)171688$$aKannengießer, Timo$$b0$$eCorresponding author$$ufzj
000863978 245__ $$aReducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System
000863978 260__ $$aBasel$$bMDPI$$c2019
000863978 3367_ $$2DRIVER$$aarticle
000863978 3367_ $$2DataCite$$aOutput Types/Journal article
000863978 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604405372_710
000863978 3367_ $$2BibTeX$$aARTICLE
000863978 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863978 3367_ $$00$$2EndNote$$aJournal Article
000863978 520__ $$aThe complexity of Mixed-Integer Linear Programs (MILPs) increases with the number of nodes in energy system models. An increasing complexity constitutes a high computational load that can limit the scale of the energy system model. Hence, methods are sought to reduce this complexity. In this paper, we present a new 2-Level Approach to MILP energy system models that determines the system design through a combination of continuous and discrete decisions. On the first level, data reduction methods are used to determine the discrete design decisions in a simplified solution space. Those decisions are then fixed, and on the second level the full dataset is used to ex-tract the exact scaling of the chosen technologies. The performance of the new 2-Level Approach is evaluated for a case study of an urban energy system with six buildings and an island system based on a high share of renewable energy technologies. The results of the studies show a high accuracy with respect to the total annual costs, chosen system structure, installed capacities and peak load with the 2-Level Approach compared to the results of a single level optimization. The computational load is thereby reduced by more than one order of magnitude
000863978 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000863978 536__ $$0G:(DE-HGF)ES2050$$aES2050 - Energie Sytem 2050 (ES2050)$$cES2050$$x1
000863978 588__ $$aDataset connected to CrossRef
000863978 7001_ $$0P:(DE-Juel1)176842$$aHoffmann, Maximilian$$b1$$ufzj
000863978 7001_ $$0P:(DE-Juel1)168451$$aKotzur, Leander$$b2$$ufzj
000863978 7001_ $$0P:(DE-Juel1)145405$$aStenzel, Peter$$b3$$ufzj
000863978 7001_ $$0P:(DE-HGF)0$$aSchuetz, Fabian$$b4
000863978 7001_ $$0P:(DE-HGF)0$$aPeters, Klaus$$b5
000863978 7001_ $$0P:(DE-HGF)0$$aNykamp, Stefan$$b6
000863978 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b7$$ufzj
000863978 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b8
000863978 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en12142825$$gVol. 12, no. 14, p. 2825 -$$n14$$p2825 -$$tEnergies$$v12$$x1996-1073$$y2019
000863978 8564_ $$uhttps://juser.fz-juelich.de/record/863978/files/Invoice_MDPI_energies-553393.pdf
000863978 8564_ $$uhttps://juser.fz-juelich.de/record/863978/files/Invoice_MDPI_energies-553393.pdf?subformat=pdfa$$xpdfa
000863978 8564_ $$uhttps://juser.fz-juelich.de/record/863978/files/energies-12-02825.pdf$$yOpenAccess
000863978 8564_ $$uhttps://juser.fz-juelich.de/record/863978/files/energies-12-02825.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863978 8767_ $$8energies-553393$$92019-07-19$$d2019-07-19$$eAPC$$jZahlung erfolgt
000863978 909CO $$ooai:juser.fz-juelich.de:863978$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000863978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171688$$aForschungszentrum Jülich$$b0$$kFZJ
000863978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176842$$aForschungszentrum Jülich$$b1$$kFZJ
000863978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168451$$aForschungszentrum Jülich$$b2$$kFZJ
000863978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145405$$aForschungszentrum Jülich$$b3$$kFZJ
000863978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b7$$kFZJ
000863978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b8$$kFZJ
000863978 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000863978 9141_ $$y2019
000863978 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863978 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863978 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000863978 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863978 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2017
000863978 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000863978 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000863978 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863978 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863978 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863978 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863978 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863978 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863978 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000863978 9801_ $$aAPC
000863978 9801_ $$aFullTexts
000863978 980__ $$ajournal
000863978 980__ $$aVDB
000863978 980__ $$aI:(DE-Juel1)IEK-3-20101013
000863978 980__ $$aAPC
000863978 980__ $$aUNRESTRICTED
000863978 981__ $$aI:(DE-Juel1)ICE-2-20101013