000863988 001__ 863988
000863988 005__ 20210130002359.0
000863988 020__ $$a978-3-030-16076-0
000863988 0247_ $$2doi$$a10.1007/978-3-030-16077-7_15
000863988 0247_ $$2Handle$$a2128/22510
000863988 037__ $$aFZJ-2019-03904
000863988 041__ $$aEnglish
000863988 1001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b0$$eCorresponding author$$ufzj
000863988 245__ $$aShape Optimization for Interior Neumann and Transmission Eigenvalues
000863988 260__ $$aCham$$bSpringer International Publishing$$c2019
000863988 29510 $$aIntegral Methods in Science and Engineering
000863988 300__ $$a185-196
000863988 3367_ $$2ORCID$$aBOOK_CHAPTER
000863988 3367_ $$07$$2EndNote$$aBook Section
000863988 3367_ $$2DRIVER$$abookPart
000863988 3367_ $$2BibTeX$$aINBOOK
000863988 3367_ $$2DataCite$$aOutput Types/Book chapter
000863988 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1563784738_22466
000863988 520__ $$aShape optimization problems for interior eigenvalues is a very challenging task since already the computation of interior eigenvalues for a given shape is far from trivial. For example, a concrete maximizer with respect to shapes of fixed area is theoretically established only for the first two non-trivial Neumann eigenvalues. The existence of such a maximizer for higher Neumann eigenvalues is still unknown. Hence, the problem should be addressed numerically. Better numerical results are achieved for the maximization of some Neumann eigenvalues using boundary integral equations for a simplified parametrization of the boundary in combination with a non-linear eigenvalue solver. Shape optimization for interior transmission eigenvalues is even more complicated since the corresponding transmission problem is non-self-adjoint and non-elliptic. For the first time numerical results are presented for the minimization of interior transmission eigenvalues for which no single theoretical result is yet available.
000863988 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000863988 588__ $$aDataset connected to CrossRef Book
000863988 773__ $$a10.1007/978-3-030-16077-7_15
000863988 8564_ $$uhttps://juser.fz-juelich.de/record/863988/files/1810.00629-1.pdf$$yOpenAccess
000863988 8564_ $$uhttps://juser.fz-juelich.de/record/863988/files/kleefeldARXIV.pdf$$yOpenAccess
000863988 8564_ $$uhttps://juser.fz-juelich.de/record/863988/files/kleefeldARXIV.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863988 8564_ $$uhttps://juser.fz-juelich.de/record/863988/files/1810.00629-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863988 909CO $$ooai:juser.fz-juelich.de:863988$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000863988 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b0$$kFZJ
000863988 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000863988 9141_ $$y2019
000863988 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863988 920__ $$lno
000863988 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000863988 980__ $$acontb
000863988 980__ $$aVDB
000863988 980__ $$aUNRESTRICTED
000863988 980__ $$aI:(DE-Juel1)JSC-20090406
000863988 9801_ $$aFullTexts