001     863988
005     20210130002359.0
020 _ _ |a 978-3-030-16076-0
024 7 _ |a 10.1007/978-3-030-16077-7_15
|2 doi
024 7 _ |a 2128/22510
|2 Handle
037 _ _ |a FZJ-2019-03904
041 _ _ |a English
100 1 _ |a Kleefeld, Andreas
|0 P:(DE-Juel1)169421
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Shape Optimization for Interior Neumann and Transmission Eigenvalues
260 _ _ |a Cham
|c 2019
|b Springer International Publishing
295 1 0 |a Integral Methods in Science and Engineering
300 _ _ |a 185-196
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1563784738_22466
|2 PUB:(DE-HGF)
520 _ _ |a Shape optimization problems for interior eigenvalues is a very challenging task since already the computation of interior eigenvalues for a given shape is far from trivial. For example, a concrete maximizer with respect to shapes of fixed area is theoretically established only for the first two non-trivial Neumann eigenvalues. The existence of such a maximizer for higher Neumann eigenvalues is still unknown. Hence, the problem should be addressed numerically. Better numerical results are achieved for the maximization of some Neumann eigenvalues using boundary integral equations for a simplified parametrization of the boundary in combination with a non-linear eigenvalue solver. Shape optimization for interior transmission eigenvalues is even more complicated since the corresponding transmission problem is non-self-adjoint and non-elliptic. For the first time numerical results are presented for the minimization of interior transmission eigenvalues for which no single theoretical result is yet available.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book
773 _ _ |a 10.1007/978-3-030-16077-7_15
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/863988/files/1810.00629-1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/863988/files/kleefeldARXIV.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/863988/files/kleefeldARXIV.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/863988/files/1810.00629-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:863988
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169421
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21