
Chapter 1

The method of fundamental solutions for

computing interior transmission eigenvalues of

inhomogeneous media

L. Pieronek and A. Kleefeld

Abstract The method of fundamental solutions is applied to the approximate com-

putation of interior transmission eigenvalues for a special class of inhomogeneous

media in two dimensions. We give a short approximation analysis accompanied

with numerical results that clearly prove practical convenience of our alternative

approach.

1.1 Introduction

The interior transmission eigenvalue problem (ITEP) arises in the study of inverse

scattering problems as a precursor to justify the feasibility of quantitative recon-

struction methods, see [CaHa12]. The corresponding eigenvalues (ITEs) are asso-

ciated with certain critical wave numbers which allow for incident test waves with

arbitrary small scattering responses that would hardly be detected in experiments.

One can prove in a mathematically rigorous way, see [KiGr08], that this loss of in-

formation due to the scatterer’s practical invisibility indeed complicates its recovery

process on the basis of sampling methods, for example.

While it has been known for quite a long time that ITEs fortunately only form

an at most discrete set, their accurate computation for a given scatterer is still rather

challenging since the underlying ITEP is both non-elliptic and non-selfadjoint. In

this paper, we will present a relatively easy algorithm for the efficient approximation

of ITEs using a robust version of the method of fundamental solutions (MFS). Hav-

ing thus been positively tested for perfectly homogeneous and possibly anisotropic
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1 Computing interior transmission eigenvalues 3

number k > 0 for which the ITEP

div(A∇w)+ k2nw = 0 in D ,

∆v+ k2v = 0 in D ,

w = v on ∂D ,

∂νA
w = ∂ν v on ∂D ,

(1.1)

where νA denotes the (co-)normal derivative, can be solved appropriately in a non-

trivial way. The penultimate condition refers to the regularity assumptions of ad-

missible eigenfunctions being (v,w)∈ L2(D) with (v−w)∈ H2
0 (D) for the isotropic

case and (v,w) ∈ H1(D) otherwise. The origin for such a differentiation is that the

usual Fredholm setting approved for eigenvalue investigations can at most be guar-

anteed then.

Having settled a proper abstract framework for such a non-linear eigenvalue

problem, approximations of ITEs can be obtained as a byproduct of finite di-

mensional approximation of the corresponding eigenfunctions. The standard MFS

achieves this for homogeneous media by looking for superposed trial functions that

are translations of certain fundamental solutions from the governing PDE. This

ansatz is somewhat converse to finite element methods as each solution candidate

automatically fulfills the interior conditions of (1.1) exactly, but not necessarily the

prescribed boundary conditions along ∂D, cf. [GiPa13]. However, since we actually

work with scatterers that are piecewise-homogeneous, we want to apply this method

at least locally for each composite and properly supported trial functions. This then

requires additional control of function transitions across adjacent components D j

and Di according to our globally imposed regularity assumptions of exact eigen-

functions. Fortunately, these extra costs only affect the approximation of w since

v always obeys a pure Helmholtz equation with constant wave number so that its

trial functions can still be defined throughout D. These observations finally make us

consider the following MFS-based approximation spaces of order m. For v, we set

Vm := span{φ v
1 , . . . ,φ

v
m} ,

where

φ v
r (x) :=

i

4
H

(1)
0 (k|x− sv

r |) ,

H
(1)
0 is the first Hankel function of order zero, x ∈ D is the actual argument whereas

{sv
1, . . . ,s

v
m} are the so-called source points for v which have to lie on some closed

exterior contour Γ v disjoint to D. For w, we need to take into account the refined

treatment of the domain and define an artificial boundary for each composite in its

individual exterior. Since the Di are in general multiply-connected, each of the Ne(i)
enclaves Ei, ji of R2\Di are labeled by ji, always starting with the unbounded com-

ponent by convention. Then we endow each of them with their own closed contour

Γ w
i, ji

⋐ Ei, ji and wish to choose Γ w
1, j1

= Γ v. We may thus drop the superscripts w or
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v from now and abbreviate the union over ji for all assigned source contours Γi, ji of

Di by Γi. We can finally setup the approximation space Wm as the span of

φ w
i, ji,r

(x) :=
i

4det A
1
2
i

H
(1)
0

(√
nik

∣∣∣∣A
− 1

2
i

(
x− sw

i, ji,r

)∣∣∣∣
)
1Di

,

where sw
i, ji,r

are now the source points for w on Γ w
i, ji

with 1 ≤ r ≤ m. Thus the di-

mension of Wm is actually a multiple of m depending on the number of composites

N and of their actual voids.

The optimal MFS solution pair (vm,wm) ∈ Vm ×Wm then tries to fulfill both the

boundary conditions of the ITEP (1.1) and the transitional regularity criteria for

global eigenfunctions best in the sense of a minimal collocation error. Therefore we

select representative points {xi1,i2,1, . . . ,xi1,i2,m} along the interface of ∂Di1 ∩ ∂Di2

where 0 ≤ i1 < i2 ≤ Nc and D0 := R
2\D is introduced for simplicity. We implicitly

omit the definition of those xi1,i2,ℓ ∈ D whose pair (i1, i2) would be associated with

an empty intersection. The same convention will affect all the x0,i2 with i2 > 1 due

to the separating bulk. Again, the total number of collocation points is a multiple of

m, but this time depending on the cumulated number of boundaries of all the Di.

Instead of performing the collocation procedure now in a straightforward way

that would result in a numerically ill-conditioned problem, we follow the stabiliza-

tion improvement from Betcke and Trefethen, see [BeTr05], that also gives rise to

call our corresponding MFS update the modified MFS henceforth. For that we pick

m-independent auxiliary points {a1, . . . ,aNa} from
⋃Nc

i=1 Di which will later ensure

that our approximations of eigenfunctions are sufficiently large in the interior. Thus

the utterly critical zero function will never be detected as a theoretically admissible

(with respect to (1.1)), but practically undesirable solution candidate.

Let us structure this amount of introduced data in matrix form to see more easily

how they emerge in the modified MFS collocation procedure. If (i1, i2) is a feasible

pair such that ∂Di1 ∩ ∂Di2 6= /0, we define Wi1,i2,i, ji ∈ C
2m×m parametrized by 1 ≤

i ≤ Nc and 0 ≤ i1 < i2 ≤ Nc for the varyingly supported trial functions of Wm via

(Wi1,i2,i, ji)ℓ,r := φ w
i, ji,r

(xi1,i2,ℓ) ,

(Wi1,i2,i, ji)m+ℓ,r := ∂ν φ w
i, ji,r

(xi1,i2,ℓ) ,

whereas for Vm it suffices to consider V ∈ C
2m×m given by

(V )ℓ,r := φ v
r (x0,1,ℓ) ,

(V )m+ℓ,r := ∂ν φ v
r (x0,1,ℓ) .

Here, 1 ≤ ℓ,r ≤ m and ν is a unit normal vector along ∂Di1 ∩ ∂Di2 6= /0 pointing

in the same direction for both components Di1 and Di2 . The evaluations of trial

functions at interior points are summarized in an analogical fashion to matrices in

C
Na×m and read

(W̃i, ji)ℓ,r := φ w
i, ji,r

(aℓ)
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as well as

(Ṽ )ℓ,r := φ v
r (aℓ) ,

respectively. In the anisotropic case, W̃i, j and Ṽ may even be extended to matrices

in C
3Na×m by attaching corresponding partial derivative evaluations of φ w

i, ji,r
and

φ v
r , respectively, for being more consistent with the norms introduced in the abstract

setting later. Through this matrix reformulation, the m-independent indices i1, i2, i, ji
for the different scattering composites are separated from the m-dependent point

discretizations labeled by ℓ,r. Since their matrices are implicitly parametrized by

the wave number k, we finally define the block-type system T (k) by

T (k) :=




V W0,1,1,1 . . . W0,1,1,Ne(1) 0 . . . . . . 0

0 W1,2,1,1 . . . W1,2,1,Ne(1) W1,2,2,1 . . . . . . W1,2,Nc,Ne(Nc)
...

...
...

...
...

...
...

...
...

...

0 WNc−1,Nc,1,1 . . . WNc−1,Nc,1,Ne(1) WNc−1,Nc,2,1 . . . . . . WNc−1,Nc,Nc,Ne(Nc)

Ṽ 0 . . . . . . . . . . . . . . . 0

0 W̃1,1 . . . W̃1,Ne(1) W̃2,1 . . . . . . W̃Nc,Ne(Nc)




.

Recall that the majority of the W matrices are zero since not all components Di1 and

Di2 will be adjacent, i.e. Wi1,i2,i, ji = 0 ∈ C
m×m if i 6∈ {i1, i2}. This might motivate

to treat T in parallel from a programming perspective, especially because the last

technical thing left to do is performing a QR factorization of T (k) = QT (k)RT (k).
Extracting its unitary part, we may write

QT (k) =

(
Q(k)

Q̃(k)

)
.

Similar as above, Q̃(k) corresponds to the lower 2Na scalar rows whereas Q(k) com-

prises the remaining upper part of QT (k). Such a decomposition of QT (k) and thus

of T (k) will implicitly help us later to distinguish numerically between real and

spurious eigenvalue approximations in an effective way.

Now we have everything together to formulate our approximate ITEP based on

the modified MFS in a very compact form: Find those k for which k 7→ Q(k) is

almost singular. For this purpose, the smallest singular value σ1(k) of Q(k) will

serve as a convenient measure for the degeneracy of Q(k) whenever its magnitude

is close to zero. Corresponding wave numbers will be called approximate ITEs and

will be denoted by km to relate its dimensional origin to the underlying eigenfunction

approximation. In the next section we will discuss our derived approach from a more

abstract perspective and show its feasibility in practice.
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1.3 Approximation analysis

The major difference for the application of the modified MFS between purely and

piecewise homogeneous media is apparently the additional treatment of interior

composite transitions for w. So far we take them numerically into account by point-

wise collocation, but is seems more natural to formulate precise assumptions with

respect to their original Sobolev spaces. Therefore we focus on Nc > 1 in the sequel

and assume first that A = I, i.e. the scatterer is entirely isotropic. Then the cor-

responding ITEP eigenfunctions are only in L2(D), in particular the w-dependent

PDE has to be fulfilled in a distributional sense and reads
∫

D
(∆ψ + k2nψ)w dx = 0

for any ψ ∈C∞
c (D). If we now approximate w by some proper wm ∈Wm, the integral

above does not vanish any more for all test functions in general. However, choosing

ψ ∈ C∞
c (D\⋃i6=i1,i2

Di) ⊂ C∞
c (D), where 1 ≤ i1 < i2 ≤ Nc are some adjacent com-

ponent indices, the following reformulation shows that the resulting deviations are

completely due to certain integral misfits over ∂Di1 ∩∂Di2 . This is because our the

trial functions in Wm, although they solve the corresponding interior ITEP condition

pointwise almost everywhere, are a priori discontinuous along composite transi-

tions:
∫

D
(∆ψ + k2nψ)wm dx

=
∫

Di1

(∆ψ + k2ni1 ψ)wm,i1 dx+
∫

Di2

(∆ψ + k2ni2 ψ)wm,i2 dx

=
∫

∂Di1
∩∂Di2

∂ν ψ(wm,i1 −wm,i2)−ψ∂ν(wm,i1 −wm,i2) ds

+
∫

Di1

(∆wm,i1 + k2ni1 wm,i1)︸ ︷︷ ︸
=0

ψ dx+
∫

Di2

(∆wm,i2 + k2ni2wm,i2)︸ ︷︷ ︸
=0

ψ dx

=
∫

∂Di1
∩∂Di2

∂ν ψ(wm,i1 −wm,i2)−ψ∂ν(wm,i1 −wm,i2) ds .

(1.2)

Conversely, we hope to recover some exact eigenfunction w with w,∆w ∈ L2(D)
in the limit m → ∞, so we expect (wm,i1 − wm,i2) to be evanescent at least with

respect to H− 1
2 (∂Di1 ∩ ∂Di2) and likewise ∂ν(wm,i1 −wm,i2) should be controlled

as H− 3
2 (∂Di1 ∩ ∂Di2)-traces. However, for technical reasons that will become

clear later, we assume the convergence to hold more strongly in H
3
2 (∂Di1 ∩ ∂Di2)

and H
1
2 (∂Di1 ∩ ∂Di2), respectively. In the anisotropic case, however, we can stay

with the natural approximation assumptions (wm,i1 −wm,i2) → 0 in H
1
2 (∂D) and

(∂νAi1
wm,i1 −∂νAi2

wm,i2)→ 0 in H− 1
2 (∂D) that originate from w ∈ H1(D).
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In order to finally adapt the prescribed boundary conditions on ∂D of the eigen-

functions from (1.1) in our approximation procedure, the explicit regularity con-

ditions on (v−w) need to be taken into account. Accordingly, the isotropic case

asserts (v−w) ∈ H2
0 (D) which suggests imposing (vm −wm) → 0 in H

3
2 (∂D) as

well as ∂ν(vm −wm)→ 0 in H
1
2 (∂D) by continuity of the corresponding trace oper-

ators. In the anisotropic case we similarly arrive at (vm −wm)→ 0 in H
1
2 (∂D) and

(∂ν vm −∂νA
wm)→ 0 in H− 1

2 (∂D).
Altogether, these preliminaries are to show that the analysis of the ITEP based

on the modified MFS (embedded into the abstract setting) is conceptually the same

for undiluted and piecewise homogeneous media. Therefore we expect most of the

results from [KlPi18a] and [KlPi18b] to be extendable to our specially inhomoge-

neous setting such as the following theorem. It can be considered as the justification

for the applicability of the modified MFS to ITE approximations.

Theorem 1. Consider a sequence {(vm,wm,km)}m∈N ⊂ Vm ×Wm ×R>0 for either

A = I with restriction n > 1 or n < 1 throughout D , 0 < A < I or I < A (where the

matrix order is understood with respect to positive definiteness) which fulfills the

following properties, respectively:

In the isotropic case, we assume

1. eigenvalue convergence: km → k 6= 0 ,

2. uniform interior bounds: C−1 <
(
‖vm‖2

L2(D)
+‖wm‖2

L2(D)

)
< C for some C > 1

and for all m large enough,

3. vanishing boundary data:
(
‖vm −wm‖

H
3
2 (∂D)

+‖∂ν(vm −wm)‖
H

1
2 (∂D)

)
→ 0

&
(
‖wm,i1 −wm,i2‖

H
3
2 (∂Di1

∩∂Di2
)
+‖∂ν(wm,i1 −wm,i2)‖

H
1
2 (∂Di1

∩∂Di2
)

)
→ 0

for adjacent components Di1 ,Di2 ⊂ D,

whereas in the anisotropic case, the corresponding assumptions read

1.’ eigenvalue convergence: km → k 6= 0 ,

2.’ uniform interior bounds: C−1 <
(
‖vm‖2

H2(D)
+‖wm‖2

H2(D)

)
<C for some C > 1

and for all m large enough,

3.’ vanishing boundary data:
(
‖vm −wm‖

H
1
2 (∂D)

+ ‖∂ν vm − ∂νA
wm‖

H
− 1

2 (∂D)

)
→ 0

&
(
‖wm,i1 −wm,i2‖

H
1
2 (∂Di1

∩∂Di2
)
+‖∂νAi1

wm,i1 −∂νAi2
wm,i2‖

H
− 1

2 (∂Di1
∩∂Di2

)

)
→ 0

for adjacent components Di1 ,Di2 ⊂ D.

In either case, the limit k of the approximate eigenvalues km is an ITE.

Proof. Since our proof to be presented works structurally similar for the anisotropic

case based on the corresponding techniques from the homogeneous scenario, see

[KlPi18b], but much easier due to more consistent control assumptions of (vm,wm)
throughout D, see condition 3’, we only focus on the isotropic case in the following.

We aim to construct an eigenfunction candidate (v,w) and show that it fulfills

the required properties for k being a real ITE. We take the weak L2(D)-limit of our
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approximate pairs (vm,wm) which exists (actually only for a subsequence which

we will, however, not explicitly restate in the sequel) by weak compactness and the

uniform bounds provided in assumption 2. The fact that v is then a distributional

solution of the Helmholtz equation on D is quite trivial because it can be shown

exactly as in the homogeneous case. The corresponding result for w relies on an

additional treatment of (1.2) which is then also straightforward by condition 3. So

far, we therefore know that (v,w) ∈ L2(D)×L2(D) fulfills the interior conditions of

(1.1) and we want to prove next that u := (v−w) ∈ H2
0 (D), i.e. u has zero boundary

data and is twice weakly differentiable in the interior (the latter criterion would be

redundant for the anisotropic demonstration).

We modify the piecewise smooth but generally discontinuous difference functions

um := (vm−wm)∈ L2(D) to ũm ∈H2(D) that will be uniformly bounded with respect

to m. As potential jumps of um go back to those of wm across ∂Di for i > 1, we want

to fill these discontinuity gaps by adding certain lifting functions θm,i ∈ H2(Di) to

um. More precisely, we set for i > 1

∆ 2θm,i = 0 in Di ,

θm,i = (wm,i∗ −wm,i)1∂Di∩∂Ei,1
on ∂Di ,

∂ν θm,i = ∂ν(wm,i∗ −wm,i)1∂Di∩∂Ei,1
on ∂Di ,

where 1 ≤ i∗ ≤ Nc is determined uniquely by Di∗ ⊂ ∂Ei,1 and ∂Di ∩∂Di∗ 6= /0. Then

we extend θm,i by zero in D\Di. Standard a priori estimates ensure that our lifting

functions can be bounded within their support Di by

‖θm,i‖H2(Di)
≤C

(
‖wm,i −wm,i∗‖

H
3
2 (∂Di∩∂Di∗ )

+‖∂ν(wm,i −wm,i∗)‖
H

1
2 (∂Di∩∂Di∗ )

)

and globally they cumulate by definition to

ũm := um +
Nc

∑
i=2

θm,i ∈ H2(D) .

Therefore, ũm solves

∆ ũm =−km(vm −nwm)+
Nc

∑
i=2

∆θm,i in Di ,

ũm = vm −wm on ∂Di ,

∂ν ũm = ∂ν(vm −wm) on ∂Di ,

and is bounded by

‖ũm‖H2(D) ≤C

(
‖∆ ũm‖L2(D)+‖vm −wm‖

H
3
2 (∂D)

+‖∂ν(vm −wm)‖
H

1
2 (∂D)

)
.
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In particular, the ũm converge both weakly in H2(D) and strongly in L2(D). Since

θm,i → 0, the strong L2(D)-limit of um and ũm coincide which then implies that

u ∈ H2(D). The fact that even u ∈ H2
0 (D) finally follows by assumption 3 and the

continuity of the trace operators from H2(D) to H
3
2 (∂D) and to H

1
2 (∂D), respec-

tively.

It remains to prove that u 6= 0. We will contrarily assume that u = 0 which would

then imply um → 0 in L2(D) according to our previous derivations. Expanding the

L2(D)-norm in its scalar product representation, we may conclude, including as-

sumption 2

liminf
m→∞

Re

∫

D
vmwm dx = liminf

m→∞

1

2

(
‖vm‖2

L2(D)+‖wm‖2
L2(D)−‖vm −wm‖2

L2(D)

)

= liminf
m→∞

1

2

(
‖vm‖2

L2(D)+‖wm‖2
L2(D)

)
≥ 1

2C
> 0 .

Determined by keeping positive signs above, we multiply the latter inequality either

with (1− ni) or with (ni − 1), assuming the latter without loss of generality. Since

min1≤i≤Nc(ni −1)> 0 and km → k > 0, we thus obtain

0 < liminf
m→∞

Re

∫

D
k2

m(ni −1)vmwm dx

= liminf
m→∞

Re

∫

D
wm∆vm − vm∆wm dx

= liminf
m→∞

Re

∫

∂D
wm∂ν vm − vm∂ν wm ds

= liminf
m→∞

Re

∫

∂D
wm∂ν vm − vm∂ν vm + vm∂ν vm − vm∂ν wm ds

= liminf
m→∞

Re

∫

∂D
(wm − vm)∂ν vm + vm∂ν(vm −wm) ds

≤ liminf
m→∞

‖vm −wm‖
H

3
2 (∂D)

‖vm‖
H
− 3

2 (∂D)
+‖∂ν vm‖

H
− 1

2 (∂D)
‖∂ν(vm −wm)‖

H
1
2 (∂D)

= 0 .

(1.3)

The last equality follows by assumption 3 and by some uniform upper bound on the

negative dual norms as inherited from our interior control of vm, cf. assumption 2.

Obviously, (1.3) gives a contradiction and manifests that u 6= 0 which thus completes

the proof.

Remark: The proof above indicates why our initial modeling assumptions for D

restrict to material components Di facing never more than one another at each tran-

sitional point. Otherwise, the traces of different wm parts might be incompatible in

any crossing point which would then lock the possibility to find sufficiently regular

lifting functions in its vicinity.
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similarly by s = 0.5 < 1 for the remaining ones, if required. Therefore we arrive at

Γ ◦◦
1,1 := ∂BS

(
(0,0)

)
, Γ ◦◦

1,2 := ∂B0.4s

(
(0.5,0)

)
, Γ ◦◦

1,3 := ∂B0.3s

(
(−0.5,0)

)
,

Γ ◦◦
2,1 := ∂B0.4S

(
(0.5,0)

)
,

Γ ◦◦
3,1 := ∂B0.3S

(
(−0.5,0)

)
,

for D◦◦ and

Γ ⊚

1,1 := ∂BS

(
(0,0)

)
, Γ ⊚

1,2 := ∂B0.4s

(
(0,0)

)
,

Γ ⊚

2,1 := ∂B0.4S

(
(0,0)

)
, Γ ⊚

2,2 := ∂B0.3s

(
(0,0)

)
,

Γ ⊚

3,1 := ∂B0.3S

(
(0,0)

)
,

for D⊚. Since the location of interior points turns out not to contribute significantly

to the output, we placed them also on a circle with identical center as D⊚

3 and D⊚

3 , re-

spectively, but half its radius. Conveniently, all the computational points introduced

in the second section of this paper could thus be distributed equidistantly on their

corresponding circles.

In the process of our numerical experiments, we fixed Na = 10 and varied m to

improve the accuracy of our approximate ITEs. Minimizing the first singular value,

the optimal results from Figure 1.2 were achieved for 60 ≤ m ≤ 100 and thus at

most 500 collocation points were needed altogether. Exceeding this regime leads

more and more to the emergence of ill-conditioning effects and thus to unreliable

results. However, approaching the admissible threshold for m from below, the cut-

off mantissa of our ITEs approximations tend to converge with increasing m, so we

believe all the listed digits to be correct (modulo round-off-errors). Note that due

to the rotational-invariant structure of D⊚ at least in the case A = I all ITEs can

easily be computed analytically using a Fourier Bessel ansatz, cf. [KlPi18a] with a

correspondingly extended matrix system for the component transitions of v and w.

The first four of them were found to be 3.347264909700945, 3.533974445921942,

3.821553103971393, 4.027679409628525 and thus confirm that the approximations

obtained by the modified MFS are indeed correct up to machine precision here.

Generally, our current observations are mostly consistent with those made for

purely homogeneous scatterers, see the references [KlPi18a] and [KlPi18b]. In par-

ticular, the computational results from the isotropic case are still significantly better

than for I 6= A which goes back to the more advanced body of trial functions for

w. Novelties affect the irregular behavior of the smallest singular value function

whose minimal dips were sometimes extremely steep and thus hard to detect (such

as the largest eigenvalue given above that was recomputed with the Fourier Bessel

ansatz). As an explanation for that, the optimal number of collocation points neces-

sary for the transitional boundaries to preserve a comparable quality of eigenvalue

approximations turned out to be surprisingly large. While the undiluted isotropic

disc required only around m = 20 collocation points altogether to recover ITEs al-

most up to machine precision, our latest experiments necessitate almost about its

fivefold per boundary component (500 in total) and thus seem to scale quadratically.
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1.5 Conclusion

In this paper, the recovery of interior transmission eigenvalues for inhomogeneous

media in two dimensions was investigated on the basis of the method of funda-

mental solutions. Although best suited for homogeneous scatterers to benefit most

from the lower dimensional boundary description, our numerical examples show

that highly accurate results can still be obtained for scatterers which consist of a

moderate number of homogeneous components. Conversely, the more complex the

inner structure of D is, including anisotropic behavior, the more collocation points

are generally needed and in correlation with that the less precise the eigenvalue

approximation becomes. Our theoretical studies additionally show that our method

will, under appropriate assumptions of the output, never detect spurious eigenvalues

in the limiting process and thus proves its practical reliability.
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