001     864040
005     20240712113127.0
024 7 _ |a 10.1002/ente.201801081
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a WOS:000511910200013
|2 WOS
037 _ _ |a FZJ-2019-03956
082 _ _ |a 620
100 1 _ |a Horsthemke, Fabian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Concept for the Analysis of the Electrolyte Composition within the Cell Manufacturing Process: From Sealing to Sample Preparation
260 _ _ |a Weinheim [u.a.]
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680001514_30209
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lithium‐ion battery (LIB) cells of the 18650 format are built in‐house with different amounts of an electrolyte. After wetting and prior to subsequent formation, the cells are opened. The electrolyte is regained by centrifuging the entire jelly roll and quantified by a gas chromatography‐flame ionization detector (GC‐FID) and inductively coupled plasma‐optical emission spectroscopy (ICP‐OES). The influence of a filling protocol applying cycles with over‐ and reduced pressure is examined with a focus on the electrolyte composition. No significant difference is found in the ratio of linear (LC) to cyclic carbonates (CCs). Furthermore, extraction by centrifugation is investigated in different scenarios by simulating almost “dry” cells to minimize alterations during the sample preparation. The quantification of these electrolytes indicates a slightly reduced amount of LC in the sample.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Winkler, Volker
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Diehl, Marcel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 3
|u fzj
700 1 _ |a Nowak, Sascha
|0 0000-0003-1508-6073
|b 4
|e Corresponding author
773 _ _ |a 10.1002/ente.201801081
|g p. ente.201801081
|0 PERI:(DE-600)2700412-0
|n 2
|p 1801081
|t Energy technology
|v 8
|y 2020
|x 2194-4296
856 4 _ |u https://juser.fz-juelich.de/record/864040/files/ente.201801081.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:864040
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21