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SUMMARY

1. Agricultural fields are commonly characterized by high nutrient and water
availabilities, which are favorable for plant growth. Such conditions might
promote the evolution of resource acquisitive strategies. We asked whether crop
plants show root traits typical of resource acquisitive strategies and whether this
strategy is primarily a result of their evolution under domestication or of the
early selection of successful candidates for domestication.

2. We studied a set of 30 crop species and their wild progenitors. We set up a
greenhouse experiment to measure five root traits: root thickness, root tissue
density, specific root length (SRL), root mass fraction (RMF) and root length
ratio. In addition, we compiled data from other wild herbaceous species, growth
in similar conditions to this experiment, to place the root traits of our crops in
the context of wider botanical variation.

3. Wild progenitors had thicker and less dense roots, with higher RMF and lower
SRL, than other wild herbs. Thicker and less dense roots are indicative of fertile
soils, which suggests that wild progenitors could have been adapted for success
in agricultural conditions. Additionally, we found that domestication generally
increased total plant dry mass, but none of the root traits evolved consistently
towards a more resource-acquisitive strategy after domestication across all
species. Root trait values differed between progenitors and crop species for most
pairs surveyed, but this occurred in diverse directions depending on crop
species.-Such differences were independent of phylogeny, functional group or
variability in the domestication processes, such as timing of the domestication

event or organ under focal artificial selection.
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4. Our comparative study revealed that the root phenotype exhibited by wild
progenitors (thick roots with low density and SRL), when compared with other
wild herbs, was in accordance with plants typical from fertile habitats. However,
none of the root traits reacted to domestication in accordance with evolution
towards fast-growth strategies. Thus, the adaptation of crop root phenotypes to
the fertile conditions of agricultural fields might be largely determined by early

choices of wild species, rather than by further evolution under domestication.

KEY-WORDS
Crop progenitors, domestication, functional traits, origins of agriculture, plant resource

economics, root economics spectrum, root tissue density, specific root length.

INTRODUCTION

Plant domestication involves selection for and modification as well as long-term use of
traits regarded as favorable by humans in wild species (Evans, 1996; Gepts, 2004).
Major changes commonly associated with artificial selection include yield increase of
the organs of interest (e.g. seeds or fruits), strong apical dominance, and loss of seed
dispersal and seed dormancy mechanisms (Evans, 1996; Gepts, 2004; Abbo et al.,
2014). The consequences of crop domestication on plant traits also include the decline
in herbivore defense (Turcotte, Turley & Johnson, 2014; Whitehead, Turcotte &
Poveda, 2016), higher stomatal densities at the upper side of leaves (Milla, de Diego-
Vico & Martin-Robles, 2013) or the nitrogen and phosphorus concentration increase in
leaves (Delgado-Baquerizo, Reich, Garcia-Palacios, & Milla, 2016). Some
consequences of crop domestication, such as higher leaf nitrogen contents (Delgado-

Baqguerizo, Reich, Garcia-Palacios, & Milla, 2016) and higher relative growth rates
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(Preece et al., 2017), would be typical of fast-growing resource-acquisitive strategies
(Lambers & Poorter, 1992; Craine, 2009; Reich, 2014). Thus, domestication might have
led to the evolution towards fast-growing plants with resource-acquisitive strategies in
response to agricultural conditions (Chapin, 1980; Craine, 2009; Milla, Osborne,

Turcotte, & Violle, 2015).

One obvious cause of these domestication effects is recurrent natural selection by the
farmers (Denison Kiers & West, 2003; Zohary, 2004; Milla, Osborne, Turcotte, &
Violle, 2015). Such selection in agricultural fields might have led to adaptations in
above and belowground traits, because croplands differ from wild habitats in the
availability of resources (nutrients and water), or in the intensity and frequency of
disturbances (Mckey, Elias, Pujol, & Duputié¢, 2012; Milla, Osborne, Turcotte, &
Violle, 2015). Nevertheless, an alternative would be that wild progenitors may also
have shown acquisitive strategies before domestication started. Human society has been
shaping the ecosystems around their settlements before agriculture started changing the
environment (Smith, 2007). The new environmental conditions would be characterized
by high fertility and increase in the frequency of disturbances (fires, selective plant
culling) and would therefore have led to the modification of diversity, enhancing the
short-term productivity of herbaceous plants (Smith, 2011). The ‘Dump Heap’
hypothesis suggests that early domestication started with species growing near human
settlements (Sauer, 1952; Zeven, 1973; Hawkes, 1983). If so, successful candidates of
domesticated species would be pre-adapted to cultivation conditions (Hawkes, 1983)
with ruderal, generalist and fast-growing characteristics (Mercuri, Fornaciari, Gallinaro,
Vanin, & di Lernia, 2018). In support of this idea, a few studies have shown greater

seed mass, faster growth rates, greater specific leaf areas, and greater nitrogen

This article is protected by copyright. All rights reserved.



concentrations in wild progenitors in comparison with other wild species, which fits
with fast-growing strategies for crops™ ancestry (Cunniff et al., 2014; Milla, Osborne,
Turcotte, & Violle, 2015; Preece et al., 2015). Thus, theoretical and empirical evidences
based on aboveground traits suggest that domesticated species have fast acquisitive
strategies, either as a consequence of pre-adaptions to the agricultural environment
and/or as evolution under cultivation. While our knowledge is pretty substantial when it
comes to how domestication affected above-ground plant traits, we have only very
limited insight into what happened below-ground. (Bishopp & Lynch, 2015; Lynch &

Brown, 2012).

A diversity of physiological and morphological root traits has been put forward as
indicative of root resource acquisitive strategies (see Freschet & Roumet, 2017 for a
review). The root length ratio (RLR; see Table 1 for abbreviations and definitions) and
its determinants — root mass fraction (RMF), specific root length (SRL), mean root
diameter (MRD) and root tissue density (RTD) — are among the most important
morphological and allocational traits determining root nutrient acquisition capacity
(Ryser & Lambers, 1995). Fast acquisitive strategies are generally characterized by low
structural investment in roots: low RMF, MRD and RTD (Ryser 1996). Poorter and
Ryser (2015) suggested a general model of root trait coordination (Fig. 1a) where
increasing soil fertility would result in larger plants, with thicker and less dense roots,
with contrasting effects on SRL (see also Freschet, Swart, & Cornelissen, 2015a).
Overall, as fertility would decrease the proportion of biomass allocated belowground
(RMF), the model predicts that, via indirect effects, RLR would generally decrease with
fertility. Since agricultural and pre-agricultural environments are mostly fertile

ecosystems (Denison, Kiers & West, 2003; Mckey, Elias, Pujol, & Duputie, 2012), one
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could therefore expect that crop evolution should have followed the pathway of
phenotypic adjustments proposed by Poorter and Ryser (2015). If correct, novel
agricultural conditions would trigger larger plants with higher MRD and lower RTD,
implying contrasting impacts on SRL and, together with the lower RMF would

determine the RLR.

In this study we investigated whether domesticated plants show root trait values typical
of resource acquisitive strategies and whether this strategy is primarily a result of their
evolution under domestication or of the early selection of successful candidates (or wild
progenitors) for domestication. These questions will be tested by: i) comparing root
traits of 30 domesticated species and their wild progenitors with root traits of other wild
herbaceous species taken in global data bases, ii) examining the domestication effect on
plant biomass and root traits and iii) testing whether the response of root traits to
domestication is consistent with the causal model of Poorter and Ryser (2015). We
hypothesized that i) wild progenitors already show trait values typical of plants adapted
to fertile habitats, ii) domestication has a similar effect on root traits as fertility.
Domestication would thus have selected larger plants with higher MRD, but lower
RTD, lower SRL, and RMF values as compared to their progenitors which are expected

to show more acquisitive root traits than other wild species.
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MATERIALS AND METHODS

Study system

To maximize the generality of our results, we worked with a phylogenetically diverse
set of 30 herbaceous crop species and their most likely wild progenitors (Table 2). Our
set of crops includes eight grasses, 11 legumes and 11 non-leguminous forbs, with
different domestication geographies and histories. We obtained seed lots for each of
these 30 crops: one belonging to an accession of a common domesticated cultivar and
another from the most likely wild progenitor (Table 2). More information about the
species and accessions (references of domesticated cultivar and wild progenitor
assignment, seed donor banks accession identifier, time under domestication and organ
under selection) can be found in Table S1. In addition, to place the root traits of wild
progenitors and domesticated plants in the context of global herbaceous variation, we
compiled root data from taxonomically diverse wild herbaceous species.

Growth conditions

For logistical reasons, the 30 crop pairs were grown staggered from January to June
2012, matching the most appropriate time of the year for the performance of each crop.
The two accessions (domesticated plant and wild progenitor) belonging to each pair
were simultaneously grown at the same spatial location within the greenhouse (located
in Mostoles, central Spain, 40°18°48°"N, 3°52°57""W). To avoid plants from becoming
severely pot-bound (Poorter, Bihler, Van Dusschoten, Climent, & Postma, 2012), we
built special long containers to allow the growth of root systems for several weeks
before reaching the bottom of the container. A round plastic cylinder (42 cm deep, 8 cm
diameter) was embedded inside, and down to the bottom end of a 25 cm long Jumbo
Rootrainer (Haxnicks Ltd., Wiltshire, UK), resulting in a final container of 42 cm depth

x 50 cm? area (2.1 L, Fig. S1). The bottom of this final container was removable without
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root or substrate disturbance, to analyze the depth of the deepest root (Fig. S1).
Containers were filled with pure sand to facilitate recovery of the complete root system.
Finally, plants were fertilized twice a week with 50 mL of a complete nutrient solution
to allow normal development in the sandy substrate and watered through regular
automatic water sprinkling as needed to maintain plants under optimal growth

conditions.

Plant root harvest and trait measurements

Every second day we checked the depth of the roots in the container by opening the
removable bottom. As soon as the roots of a given species reached the bottom of the
container, the complete set of individuals belonging to a species pair were harvested. At
that time, plants were 30 - 40 days old after germination, the exact time depended on the
crop pair. We harvested 5-10 (median 9) healthy and well developed plants per
accession (wild progenitor and domesticated plant), and carefully cleaned the whole
root system. The whole root system of each individual was transferred to a transparent
tray filled with water, where the root branches were carefully spread out to avoid
overlapping. Then the root system was scanned as greyscale images at a resolution of
400 dpi (Epson scan GT 15000). Total root length (m), root mean diameter (mm), and
root volume (cm®) were determined for the whole root system using a scanner-based,
digital image analysis system (WinRHIZO; Regents Instruments, Quebec City, Canada;
Arsenault, Poulcour, Messier & Guay, 1995). Following root scanning, roots and the
aboveground part of each plant were oven dried (60°C) and weighed to estimate: total
plant dry mass (g), root tissue density (RTD, g root ml root), specific root length (SRL,
m root g root), root mass fraction (RMF, g root g plant) and root length ratio (RLR,

m root g plant) (Table 1). A total of 527 plants were phenotyped.
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Data gathering

To test whether the roots of domesticated plants and wild progenitors were different to
those of other wild herbaceous species, we compiled root data from two global
databases of root traits of wild herbaceous species. In both databases, we selected data
of herbaceous species from diverse botanical families and excluded data from tree
species, crop species and species belonging to the same genus as our crops. In addition,
the data selected from both databases belong to plants grown in conditions similar to
our experiment: pots in controlled conditions (indoors or outdoors), to ensure the
comparability with the data of the 30 domesticated plants and wild progenitors. The
Rhizopolis-db, a global database of fine root traits (details in Freschet et al., 2017) was
used for comparisons of MRD (145 species; 53% forbs, 30% grasses and 17%
legumes), RTD (141 species; 54% forbs, 30% grasses and 16% legumes) and SRL (99
species; 43% forbs, 36% grasses and 20 % legumes). The RMF database (398 species;

49% forbs, 42% grasses and 9% legumes) was taken from Poorter et al. (2015).

Statistical analyses

Prior to hypotheses testing we imputed missing values (1.6%), which were randomly
distributed along the data, using multivariate imputations with chained equations
(Nakagawa & Freckleton, 2008; Penone et al., 2014) with the R package “mice”
(Buuren & Groothuis-Oudshoorn, 2011). In addition, five individuals with extreme trait
values were excluded from the data. Finally, all subsequent analyses were ran with 522
individuals, and trait data were logso-transformed to meet normality assumptions and
homogeneity of variance of models™ residuals. All statistical analyses were performed

with the R software (R Core Team, 2014).
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To test whether the roots of domesticated plants and wild progenitors were different to
those of other wild herbaceous species, we performed phylogenetic generalized least
squares models (PGLSs) comparing wild progenitors and domesticated species with
databases of root traits of wild herbaceous species. The root traits: MRD, RTD, SRL
and RMF were included as response variables in the PGLS models. Plant type (wild
progenitor, domesticated plant or other wild species) was included as explanatory
variable. Additionally, we analyzed whether differences in the root traits along plant
types varied for grasses, legumes and forbs (functional group). For doing so, we
included functional group and the interaction with plant type as explanatories in the
models. PGLS models incorporate phylogenetic correlation structure in model residuals
to account for phylogenetic non-independence of species data points (Symonds &
Blomberg, 2014). To run the PGLS regressions, we built a phylogenetic tree for each
root trait containing the species of each database and the 30 crops pairs. To do so, each
phylogenetic tree was derived from a largest reference tree of the angiosperms (Zanne et
al., 2014), with the drop.tip function of ‘phytools’ package (Revell, 2012). Species not
represented in the reference tree were replaced by other species of the same genus
presented in the reference tree, only when there was one or two species representatives
of the genus in the data set; or removed from the data sets when there were more species
representing the genus. The resulting trees did not have polytomies. PGLSs were
implemented using the gls function of the ‘picante’ package (Kembel et al., 2010).
Finally, post hoc test with pairwise comparison among levels of the fixed effects factors
and the interaction were conducted using the phylANOVA function of the ‘phytools’

package (Revell, 2012).
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To assess the effect of domestication on each root trait separately, we used linear mixed
effect models. The dependent variables were the five root traits and total plant dry mass
(TDM). In all models, domestication status (domesticated plant or wild progenitor) was
included as fixed factor. Crop identity (30 crops, Table 2) was included as a random
effect over the intercept of the model, and as a random effect over domestication status
(random slope effect, analogous to an interaction term in fixed effects models). In
addition, we analyzed whether domestication effects were different for grasses,
legumes, and forbs. For doing so, we included functional group and its interaction with
domestication status as fixed effect terms in the models. All models were run with the
Ime function of the “nlme” R package (Pinheiro et al., 2015). The significance of the
fixed factors was tested with type Il analysis of variance, with the mixed function of
the ‘afex’ package (Singmann, Bolker, & Westfall, 2015). The mixed function fits the
complete model and creates reduced versions removing a single effect, then compares
the reduced model to the complete model. In order to assess goodness of fit, we
obtained the conditional R? (variance explained by random and fixed factors) and
marginal R? (the variance explained by fixed factors) of the models following Johnson

(2014), using the R package “MuMIn” (Barton, 2013).

Finally, to test how domestication changed root traits and the consequences thereof for
the whole root phenotype, we used the multivariate model proposed by Poorter and
Ryser (2015), and tested it using path analyses (Shipley, 2009). The original model
predicts the response of root traits to nutrient availability (Fig.1a), but since we
hypothesized that evolution under domestication occurs in high fertility habitats
(Denison, Kiers & West, 2003), we replaced “nutrient availability” by “domestication

status” (Fig. 1b). To test whether our data fit the Poorter and Ryser (2015) model, we
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conducted a phylogenetic confirmatory path analysis. Phylogenetic analysis was
selected to account for non-independence of data due to phylogenetic relatedness of the
crop species (Gonzélez-Voyer & VVon Hardenberg, 2014). In phylogenetic path analysis,
the predicted relationships between the variables are translated into models and
analyzed using PGLS with phylogenetic signal (Pagel’s lambda) estimated with
maximum likelihood. To conduct the PGLS we built a phylogenetic tree. To do so, we
pruned the large dated angiosperm phylogeny tree (Zanne et al., 2014) to our set of
genera using the “phytools” R package (Revell, 2012). The significance of the paths
was calculated using a d-sep approach (Shipley, 2009), based on an acyclic graph that
depicts the hypothetical relationships and independence claims between variables. The
d-seps are translated into models and analyzed using PGLS. Likewise, we assessed the
goodness of fit of the data to the path model using the associated p-values with the
Fisher’s C statistic (Shipley, 2009). The standardized path coefficients were obtained
from PGLS (Grace & Bollen, 2005). In addition, we estimated the coefficients and
significance of indirect and total effects of domestication on each trait in the path
diagram (Grace & Bollen, 2005). The indirect effects were calculated by multiplying all
the path coefficients that link the domestication variable with each variable of the
model, and total effects were computed as the sum of direct and indirect effects (Grace
& Bollen, 2005). The significance of the total effects of domestication on each root trait

was calculated with the sum of the variance associated to each direct and indirect effect.
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RESULTS

Root functional differences between domesticated species, wild progenitors and
other wild herbaceous species

To see how wild progenitors and domesticated plants were relative to wild species, we
compared our data with large compilations from the literature. Wild progenitors and
domesticated plants significantly differed from other wild herbaceous species for the
four root traits analysed (plant type: P< 0.05, Fig. 2), irrespective of functional group
(functional group: P> 0.05, Table S2). The wild progenitors and domesticated
accessions of this experiment had thicker and less dense roots in comparison with the
data from wild herbaceous species, with lower SRL scores, and greater allocation to

root biomass (Fig. 2).

Domestication and crop identity effects on TDM and root traits

We found a general increase of total dry mass after domestication (Table 3, Fig. 3a).
TDM ranged from 0.2-4 g for wild progenitors and 0.5-8 g for domesticated accessions
(Table S3). The response to domestication varied among crops, as indicated by the
variance associated with crop identity (Table 3). In addition, the response to
domestication was more positively pronounced for larger wild progenitors (correlation
term: crop identity x domestication status = 0.63), such as bean or cucumber; and was
even slightly negative for smaller progenitors, such as white clover or Rucola (Fig.3a).
We also found a stronger response to domestication in legumes, which increased TDM

after domestication more than grasses and forbs (Fig. 4a).
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None of the five root traits showed a significant response to domestication across
species (Domestication effect P> 0.15, Table 3). The variance associated with the
random structure indicated a wide variability in the response to domestication among
the 30 pairs of crops (Figs. 3b-f). For example, RMF increased with domestication in
crops such as soybean or chickpea, but decreased in others such as cabbage or oat
(Table S3, Fig. 3e). MRD, SRL, RMF and RLR was significantly affected by functional
group (Table 3, Fig. 3b, d, e and f). Nevertheless, the response to domestication of each
functional group was insignificant for the five root traits (interaction domestication

status x functional group, Table 3, Figs. 4b-f).

Multi-trait response of roots to domestication

Plants increased their total dry mass in response to domestication (path = 0.27, P=
0.004, Fig. 1b). However, MRD, RTD and RMF were not directly affected by
domestication (P> 0.05, Fig. 1b). The overall goodness of fit of the data to the
theoretical model was high (C-statistic of 20.6 and associated P 0.55, Fig. 1b). The
relationships between TDM and root traits fitted the a priori model (Poorter & Ryser,
2015; Fig. 1a), with the exception of the relationship between TDM and RTD (see
significance and path scores in Fig. 1b). Larger plants had thicker fine roots (MRD, path
= 0.33, P=0.003, Fig. 1b). Both MRD and RTD had negative effects on SRL (path = -
0.76 and P< 0.001 for MRD; path -0.5 and P< 0.001 for RTD, Fig. 1b) and RLR was
more dependent on changes in SRL than in RMF (path = 0.95, P< 0.001, and path =
0.27, P< 0.001, respectively, Fig. 1b). In line with univariate analyses, domestication
had negligible effects on root traits via indirect effects. The positive effect on plant size
driven by domestication was not strong enough to trigger significant net effects on

MRD, RTD, SRL and RMF (Fig. 5).
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DISCUSSION

Based on the screening of root traits of a uniquely large set of crop species, our analyses
revealed new correlates of plant domestication. Specifically, we found that the evolution
towards larger plants during domestication implies correlated evolution of thicker roots.
However, since (i) the direct effect of domestication on plant size and of plant size on
root thickness were modest, and (ii) indirect effects are small, due to their multiplicative
nature; the overall effect of domestication on root thickness was of small magnitude.
Additionally, root trait responses to domestication were diverse among the several crop
species. That variation was however unrelated to phylogenetic or peculiarities of
domestication process of the 30 crops. More interestingly, we showed that root traits of
domesticated plants and of their wild progenitors are not a random sample of global
functional trait variation of other wild herbaceous species; they are biased towards trait
scores indicative of plants adapted to highly fertile conditions. This result leads us to
suggest that the crop root phenotypes, and their adaptability to agricultural habitats,
were mainly determined by early selection of wild species which were already pre-
adapted to highly fertile and frequently disturbed habitats, rather than by further
evolution with domestication. These results have important implications for our
understanding of resource acquisition strategies of crop roots and portend applied

approaches to develop improved cultivars.

The roots of crop wild progenitors were pre-adapted to agricultural conditions

Current crop phenotypes are the outcome of centuries of selection under agriculture, but
also reflect the choices of early farmers among available wild plants (Sauer, 1952;
Preece et al., 2015; Mercuri, Fornaciari, Gallinaro, Vanin, & di Lernia, 2018). Although

crop evolution under domestication exerted a modest impact on root traits in our study,
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as discussed below, early farmers already showed a bias on root phenotypes of
agricultural plants. Specifically, roots of crops’ wild progenitors, in comparison with
those of other wild herbs, were less dense and thicker (Fig. S2), which is typical of fast-
growing species from fertile habitats (Kramer-Walter et al., 2016; Reich, 2014; Ryser,
1996). Furthermore, thicker but less dense roots are suggested to be caused by roots
with more cortex area than stele (xylem vessels) area, because cortex area is less dense
(Kong et al., 2014). Species with such a root phenotype rely more on mycorrhizal
associations for mineral nutrition (Brundrett, 2002; Ma et al., 2018) and indicate
acquisitive strategies (Kong et al., 2016). Nevertheless, some evidences, from maize and
bean, suggest that domestication triggered roots with larger vessel area (York, Galindo-
Castafieda, Schussler, & Lynch, 2015; Pefia-Valdivia et al., 2010, Burton, Brown &
Lynch, 2013). Future studies would be needed to test the proportion of vessel and cortex
area of wild progenitors and domesticated plants in the context of botanical variation,

and the effect of domestication.

Further, the high diameter and low SRL displayed by the roots of wild progenitors are
consistent with a recent worldwide meta-analysis, where these attributes were generally
associated with fertile environments (Freschet et al., 2017). Indeed, thicker, lower SRL
roots may be generally found where plants are less dependent on soil exploitation by
fine roots. Finally, larger biomass allocation to the roots of wild progenitors, as
compared to that of other wild herbs, is more surprising in light of the typical species in
fertile soils but fits the theory of balanced organ biomass and morphology above- versus
below-ground, as postulated by Freschet, Kichenin, & Wardle (2015b). Specifically,
since crops and their wild progenitors have relatively higher specific leaf area than

average (Milla, Osborne, Turcotte, & Violle, 2015; Tribouillois et al., 2015), they rely
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less on leaf biomass investment to capture light and could therefore invest more
biomass into belowground organs. Further studies comparing the biomass investment
below and aboveground in domesticated plants with this in wild herbs would be

necessary to test this hypothesis.

The fact that wild progenitors exhibit a root phenotype adapted to agricultural habitats is
in line with the Dump Heap hypothesis. This hypothesis suggests that early
domestication started with the species growing around human settlements, in
anthropogenic environments which are characterized by relatively high nutrient
availabilities and disturbance frequencies (Sauer, 1952; Zeven, 1973; Hawkes, 1983).
Fast growing and short-lived plants would become more abundant around settlements,
would thrive better in early agricultural habitats, and thus would respond better to the
early attempts of cultivation and further domestication (Hawkes, 1983; Mercuri,
Fornaciari, Gallinaro, Vanin, & di Lernia, 2018). Although rigorous comprehensive
tests are still pending, wild progenitors tend to show specific leaf area and nitrogen
content of leaves typical of fast-growing species, when compared with other wild
herbaceous plants (Cunniff et al., 2014; Milla, Osborne, Turcotte, & Violle, 2015). Our
screening of root analysis traits is in line with aboveground evidence that wild plants
with nutrient acquiring strategies were more successful candidates for domestication by

being pre-adapted to the cultivation conditions.

Root traits changed modestly and in idiosyncratic ways after domestication
We hypothesized that root morphology and allocation would change towards resource-
acquisitive strategies alongside domestication processes. Contrary to our hypothesis, we

found a wide diversity of root morphology and allocation responses to domestication.
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For most root traits, trait scores decreased in some species or increased in others, which
Is consistent with a generalized species-specific response, as observed in previous case
studies that compared wild progenitors to domesticated species. For example, SRL
decreases with domestication in beans (Perez-Jaramillo et al., 2017) but not in maize
(Gaudin, Mc Clymont & Raizada, 2011). Even case studies reporting on the same crop
species show opposite responses to domestication depending on growth conditions or
the identities of crop varieties under study. For instance, similar allocation to roots was
reported for wild progenitors and domesticated species of wheat and maize (Gaudin,
McClymont & Raizada, 2011; Nakhforoosh, Grausgruber, Kaul, & Bodner, 2014),
whereas others found lower allocation to roots in domesticated species for the same
two species (Waines & Ehdaie, 2007; Burton, Brown, & Lynch, 2013; Szoboszlay et al.,
2015; Roucou, Violle, Fort, Roumet, Ecarnot, & Vile, 2018). Our broader screening
together with previous case studies, supports that the effects of domestication on root
morphology and allocation are diverse. Nevertheless, to assess the generality of our
results, it will be necessary to conduct similar experiments on root traits under more
realistic field conditions (Poorter et al. 2016) and under contrasting growth conditions

such as competition or fertilization level.

Acknowledging that the response of root traits to domestication is species-specific, we
further investigated other explanatory variables that might account for the diversity in
the size and directionality of domestication effects among crops. First, we asked
whether crops belonging to different functional groups showed contrasting responses to
domestication. In accordance with the literature, grasses tended to allocate more
biomass to roots than forbs (Fig. 4c; Roumet, Lafont, Sari, Warembourg, & Garnier,

2008; Poorter et al. 2015; Roumet et al. 2016). Similarly, legumes had lower SRL than
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forbs, also in line with previous evidence (Tjoelker, Craine, Wedin, Reich, & Tilman,
2005). However, the effect of domestication on root traits was generally insignificant
among groups (Table 3, Fig.4), ruling out that functional groups could account for the
observed diversity in crop responses to domestication. Similarly, taxonomic affinities
have been used to explain variation in root morphology among taxa previously (Kong et
al., 2014; Valverde-Barrantes, Freschet, Roumet, & Blackwood, 2017). However,
phylogenetic relationships did not contribute to explain the diversity in crop reactions to
domestication (Table S4, Methods S1). Lastly, we explored whether the variation of
reactions was explained by variability in domestication processes (timing of the
domestication event and organ under focal selection). Interestingly, plant size has
increased more in older than in younger crops (Table S4; Fig. S3), which is consistent
with a longer selective pressure on size. However, the size of the domestication effect
for root traits was not explained by those aspects of the domestication process (Table
S4; Figs. S3-4). Further characteristics of the domestication processes such as intensity
of the selective efforts or geographical location of domestication event may help to

elucidate the observed diversity of root traits responses to domestication.

CONCLUSIONS

Our comparative analysis revealed that none of the root traits reacted to domestication
in accordance with evolution towards faster-growth strategies. Root traits changed
during most of the 30 domestication processes surveyed here, but this occurred in
diverse directions, depending on the crop species, and irrespective of phylogenetic and
functional group affiliations, or of variability in the domestication processes. The
diversity of responses to domestication encountered here emphasizes the importance of

studying multiple crops with a comparative focus. Finally, the less dense and thicker
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roots with low SRL of crop wild progenitors suggests that the root phenotype of the
wild species selected by early farmers were already adapted to fertile and disturbed
conditions, thereby supporting the Dump Heap hypothesis. Thus, the adaptation of root
phenotypes to fertile soil appears to be largely determined by the choice of wild species

by the first farmers rather than by further evolution under domestication.
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Economic Botany, 58, 5-10.

Trait Abbreviation Definition Units
Total dry mass TDM plant mass g
Mean root diameter MRD root thickness mm
Root tissue density RTD root mass/root volume g/ml
Specific root length SRL root length/root mass m/g
Root mass fraction RMF root mass/plant mass a/g
Root length ratio RLR root length/plant mass m/g

measured in the experiment.
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Table 2. Functional group, botanical family, common and botanical names of each of

the 30 domesticated species and wild progenitors used in this experiment.

ggonlf;mnal Family i%re?lpt)i ty Domesticated species Progenitor species
Amaranthaceae Chard Beta vulgaris L. Beta vulgaris L.
Asteraceae Cardoon Cyn.ara cardunculus L. Cyn.ara cardunculus L.
Sunflower  Helianthus annuus L. Helianthus annuus L.
Brassicaceae Cabbage Brassica oleracea L. Brassica oleracea L.
Rucola Eruca vesicaria (L.) Cav. Eruca vesicaria (L.) Cav.
Cucurbitaceae  Cucumber  Cucumis sativus L. Cucumis sativus L.
Forb Linaceae Flax Linum usitatissimum L. Linum usitatissimum L.
Malvaceae Cotton Gossypium hirsutum L. Gossypium hirsutum L.
Chillipepper Capsicum baccatum L. E\:/sﬁiljc; Es?w?);i&grl: 1020 [F2mel i
. Capsicum annuum var. glabriusculum
solanaceae A BB el [ (DSnaI) Heiser & Picke?sgill
Tomato Solanum esculentum Dunal Solanum pimpinellifolium (L.) Mill.
Barley Hordeum vulgare L. Hordeum spontaneum K.Koch
Corn Zea mays L. Zea mexicana (Schrad.) Kuntze
Milllet Pennisetum glaucum (L.) R.Br. Pennisetum glaucum (L.) R.Br.
Oat Avena sativa L. Avena sterilis L.
Grass Poaceae Rye Secale cereale L. Secale cereale L.
Sorghum Sorghum sudanense (Piper) Stapf ~ Sorghum bicolor (L.) Moench
. Triticum dicoccoides (Kérn. ex Asch.
Wheat Triticum durum Desf. & Graebn.) Schweinf.(
Rice Oryza sativa L. Oryza rufipogon Griff.
Bean Phaseolus lunatus L. Phaseolus lunatus L.
Chickpea Cicer arietinum L. Cicer reticulatum Ladiz.
Cowpea Vigna unguiculata (L.) Walp. Vigna unguiculata (L.) Walp.
Lentil Lens culinaris Medik. Lens culinaris (Boiss.) Ponert
Lupin Lupinus luteus L. Lupinus luteus L.
. . Pisum sativum subsp. elatius
Legume Eabacese Pea Pisum sativum L. (M.Etieb.) Asch. & gre_lebn_
Soybean Glycine max (L.) Merr. SLIJ{%'I?GHTSE;‘SL;:SF)' ol (Elidsellel <
bl Trifolium repens L. Trifolium repens L.
clover
Faba bean  Vicia faba L. Vicia narbonensis L.
Lucerne Medicago lupulina L. Medicago lupulina L.
Vetch Lathyrus sativus L. Lathyrus cicera L.
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Table 3. Effect of domestication on total plant dry mass (TDM) and root traits: mean root diameter (MRD), root tissue density (RTD), specific
root length (SRL), root mass fraction (RMF) and root length ratio (RLR), resulted from the linear mixed-effect models. The table shows the F
value and significance (*, P<0.05; **, P<0.01) of domestication effect, functional group and the interaction domestication status x functional
group. The variance of the model explained by the fixed effects is indicated by R*marginal (R?m). The variances associated with the random
effects are indicated by the terms: crop identity, the effect of crop identity on the response of domestication (i.e. random effect on the slope) and

the residual variance. Finally, the variance explained by both: random and fixed effects are presented with the R%conditional (R’c).

Fixed effects Random effects

Domestication Functional Dom X EG Crop Croo x Dom  Residual
effect (Dom) group (FG) R’m identity (Crop) P R’

F F F variance variance variance
TDM (9) 11.15% 1.82 1.84 0.14 0.33 0.28 0.14 0.85
MRD (mm) 2.63 7.72*%* 0.67 0.29 0.04 0.02 0.01 0.91
RTD (g/ml) 2.69 1.63 0.28 0.07 0.01 0.01 0.01 0.73
SRL (m/g) 0.04 8.60** 0.45 0.28 0.25 0.20 0.13 0.85
RMF (g/g) 0.08 4.94* 0.22 0.15 0.02 0.03 0.02 0.73
RLR (m/g) 0.00 7.97* 0.29 0.27 0.27 0.22 0.13 0.87
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Figure 1. (a) Conceptual model of Poorter and Ryser (2015) for root inter-trait
relationships, and the effect of nutrient availability. The predicted direction of each
effect is indicated with + or —. Nutrient availability increases total dry mass and reduces
root mass fraction. Larger plants generally have a thicker mean root diameter, but their
effect on root tissue density is less pronounced. Through the predicted increase of mean
root diameter, the specific root length decreases. As a consequence, the root length ratio
decreases, achieving less root length per unit of total plant mass. (b) Fit of the
domesticated plant and wild progenitor dataset to the conceptual model (a) using
phylogenetic path analysis. Here, the nutrient availability effect is replaced by the
domestication effect, as argued in the Introduction Section. Standardized path
coefficients (obtained from phylogenetic generalized least squares models) are shown in
each arrow. Negative paths coefficients are indicated with dashed arrows. Statistically
significant paths (P<0.05) are marked in bold and an asterisk. The P value associated to
the C-statistic is obtained using the P values of the conditional independencies tested

(see Shipley, 2002). P> 0.05 indicates that the data fits the model.

(a)
- Root mass
/ fraction
Nutrients
Root length
ratio
Root tissue
density —
T Specific root +
mass
Mean root length
diameter -
(b)
Root mass
//E(L//’ fraction 0.27*
Domestication
Root length
ratio
Root tissue .
density [N '&5 0 .
) Specific root 0.05%
Mean 1oot | »* length
diameter -0.76*

C statistic = 20.56, p=0.55
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Figure 2. The domesticated and wild progenitor species of this study in the context of

botanical diversity of four root traits: mean root diameter (a), root tissue density (b),

specific root length (c) and root mass fraction (d). The symbols represent the mean

score of a given species: domesticated (dark circles), wild progenitors (dark triangles)

and global database (light circles), sorted by phylogeny (phylogenetic tree on the left

side). Colors of the symbols correspond to functional group: forbs (blue), grasses

(green) and legumes (yellow). The total number of species is indicated on top of each

plot. Statistically significant differences (*, P<0.05; ns, P>0.05) among domesticated

(D), wild progenitor (W) and other wild species (O), extracted from post hoc test, are
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Figure 3. Effect of domestication on on total dry mass (TDM, a), mean root diameter
(MRD, b), root tissue density (RTD, c), specific root legth (SRL, d), root mass fraction
(RMF, e) and root length ratio (RLR, f). The symbols show the domestication effect
size estimated by Hedges'G and 95% confidence intervals for each crop. The overall
effect of domestication on each trait, taken from results of mixed models (Table 3), is
indicated in each graph with a black diamond. Colors of the points correspond to
functional group: forb (blue), grass (green) and legume (yellow) and the shapes indicate

the botanical families.
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Figure 4. Evolution of total plant dry mass (a) and root traits: mean root diameter (b),
root tissue density (c), specific root length (d), root mass fraction and root length ratio
(f) under domestication, depending on functional group affiliation: forbs (blue squares),
grasses (green triangles) and legumes (yellow dots). The symbols and error bars show
the estimated least squares values means and 95% confidence limits, respectively,
obtained by mixed effect models. The significances (*, P<0.05; **, P<0.01) of
domestication and functional group, as taken from table 2, are displayed in the right

corner of each graph.
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Figure 5. Effect sizes of the direct (grey bars), indirect (green bars), and total effects
(sum of direct and indirect effects, black diamond) of domestication on total plant dry
mass, mean root diameter, root tissue density, specific root length, root mass fraction,
and root length ratio. All the effects were calculated from standardized path coefficients,

taken from Fig. 1b.
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