000864056 001__ 864056
000864056 005__ 20230426083209.0
000864056 0247_ $$2doi$$a10.1103/PhysRevB.100.045130
000864056 0247_ $$2ISSN$$a0163-1829
000864056 0247_ $$2ISSN$$a0556-2805
000864056 0247_ $$2ISSN$$a1050-2947
000864056 0247_ $$2ISSN$$a1094-1622
000864056 0247_ $$2ISSN$$a1095-3795
000864056 0247_ $$2ISSN$$a1098-0121
000864056 0247_ $$2ISSN$$a1538-4489
000864056 0247_ $$2ISSN$$a1550-235X
000864056 0247_ $$2ISSN$$a2469-9950
000864056 0247_ $$2ISSN$$a2469-9969
000864056 0247_ $$2Handle$$a2128/22526
000864056 0247_ $$2WOS$$aWOS:000476688000006
000864056 0247_ $$2altmetric$$aaltmetric:48024526
000864056 037__ $$aFZJ-2019-03965
000864056 082__ $$a530
000864056 1001_ $$0P:(DE-Juel1)130855$$aMüller, Mathias C. T. D.$$b0
000864056 245__ $$aElectron-magnon scattering in elementary ferromagnets from first principles: Lifetime broadening and band anomalies
000864056 260__ $$aWoodbury, NY$$bInst.$$c2019
000864056 3367_ $$2DRIVER$$aarticle
000864056 3367_ $$2DataCite$$aOutput Types/Journal article
000864056 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1564660549_5844
000864056 3367_ $$2BibTeX$$aARTICLE
000864056 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864056 3367_ $$00$$2EndNote$$aJournal Article
000864056 520__ $$aWe study the electron-magnon scattering in bulk Fe, Co, and Ni within the framework of many-body perturbation theory implemented in the full-potential linearized augmented-plane-wave method. To this end, a k-dependent self-energy (GT self-energy) describing the scattering of electrons and magnons is constructed from the solution of a Bethe-Salpeter equation for the two-particle (electron-hole) Green function, in which single-particle Stoner and collective spin-wave excitations (magnons) are treated on the same footing. Partial self-consistency is achieved by the alignment of the chemical potentials. The resulting renormalized electronic band structures exhibit strong spin-dependent lifetime effects close to the Fermi energy, which are strongest in Fe. The renormalization can give rise to a loss of quasiparticle character close to the Fermi energy, which we attribute to electron scattering with spatially extended spin waves. This scattering is also responsible for dispersion anomalies in conduction bands of iron and for the formation of satellite bands in nickel. Furthermore, we find a band anomaly at a binding energy of 1.5 eV in iron, which results from a coupling of the quasihole with single-particle excitations that form a peak in the Stoner continuum. This band anomaly was recently observed in photoemission experiments. On the theory side, we show that the contribution of the Goldstone mode to the GT self-energy is expected to (nearly) vanish in the long-wavelength limit. We also present an in-depth discussion about the possible violation of causality when an incomplete subset of self-energy diagrams is chosen
000864056 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000864056 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000864056 536__ $$0G:(DE-Juel1)jpgi10_20181101$$aOptoelectronic properties of materials for photovoltaic and photonic applications (jpgi10_20181101)$$cjpgi10_20181101$$fOptoelectronic properties of materials for photovoltaic and photonic applications$$x2
000864056 542__ $$2Crossref$$i2019-07-22$$uhttps://link.aps.org/licenses/aps-default-license
000864056 588__ $$aDataset connected to CrossRef
000864056 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1$$ufzj
000864056 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b2$$eCorresponding author$$ufzj
000864056 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.100.045130$$bAmerican Physical Society (APS)$$d2019-07-22$$n4$$p045130$$tPhysical Review B$$v100$$x2469-9950$$y2019
000864056 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.100.045130$$gVol. 100, no. 4, p. 045130$$n4$$p045130$$tPhysical review / B$$v100$$x2469-9950$$y2019
000864056 8564_ $$uhttps://juser.fz-juelich.de/record/864056/files/PhysRevB.100.045130.pdf$$yOpenAccess
000864056 8564_ $$uhttps://juser.fz-juelich.de/record/864056/files/PhysRevB.100.045130.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864056 909CO $$ooai:juser.fz-juelich.de:864056$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864056 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
000864056 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b2$$kFZJ
000864056 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000864056 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000864056 9141_ $$y2019
000864056 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864056 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864056 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000864056 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000864056 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864056 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864056 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864056 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864056 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864056 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864056 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864056 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864056 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864056 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000864056 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000864056 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000864056 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000864056 980__ $$ajournal
000864056 980__ $$aVDB
000864056 980__ $$aI:(DE-Juel1)IAS-1-20090406
000864056 980__ $$aI:(DE-Juel1)PGI-1-20110106
000864056 980__ $$aI:(DE-82)080009_20140620
000864056 980__ $$aI:(DE-82)080012_20140620
000864056 980__ $$aUNRESTRICTED
000864056 9801_ $$aFullTexts
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.76.323
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.705
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.187201
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.174404
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.235439
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.66.763
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(94)00086-I
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.107007
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1180
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.236402
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.9427
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.097205
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.187204
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-019-08445-1
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.68.13
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.78.865
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/11/4/011
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.035107
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.267203
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.104414
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.205109
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.74.601
000864056 999C5 $$1W. G. Aulbur$$2Crossref$$oW. G. Aulbur Solid State Physics 1999$$tSolid State Physics$$y1999
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.72.607
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.46.13051
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.125102
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.44.95
000864056 999C5 $$1H. Höchst$$2Crossref$$oH. Höchst 1977$$y1977
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.19.2919
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.21.3245
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(81)90660-8
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(85)90024-9
000864056 999C5 $$1H. Höchst$$2Crossref$$oH. Höchst 1976$$y1976
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0375-9601(76)90059-1
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.139.A796
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.2389
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.096401
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.155131
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.7419
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.054434
000864056 999C5 $$1C. Friedrich$$2Crossref$$oC. Friedrich First Principles Approaches to Spectroscopic Properties of Complex Materials 2014$$tFirst Principles Approaches to Spectroscopic Properties of Complex Materials$$y2014
000864056 999C5 $$1C. Friedrich$$2Crossref$$oC. Friedrich Handbook of Materials Modeling. Volume 1 Methods: Theory and Modeling 2018$$tHandbook of Materials Modeling. Volume 1 Methods: Theory and Modeling$$y2018
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.064433
000864056 999C5 $$1T. Moriya$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-82499-9$$y1985
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.117.648
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02812722
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.035120
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.74.1827
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(98)00174-X
000864056 999C5 $$1G. Baker$$2Crossref$$oG. Baker Padé Approximants 2010$$tPadé Approximants$$y2010
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.3528
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/10/6/011
000864056 999C5 $$1G. D. Mahan$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4757-5714-9$$y2000
000864056 999C5 $$1A. L. Fetter$$2Crossref$$oA. L. Fetter Quantum Theory of Many-Particle Systems 1971$$tQuantum Theory of Many-Particle Systems$$y1971
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-4-121-1
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.13840
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2007.04.069
000864056 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.195132