000864065 001__ 864065
000864065 005__ 20240711113846.0
000864065 0247_ $$2doi$$a10.1016/j.nme.2018.11.012
000864065 0247_ $$2Handle$$a2128/22523
000864065 0247_ $$2WOS$$aWOS:000454165000044
000864065 037__ $$aFZJ-2019-03974
000864065 082__ $$a624
000864065 1001_ $$0P:(DE-Juel1)165722$$aDickheuer, Sven$$b0$$eCorresponding author
000864065 245__ $$aIn situ measurement of the spectral reflectance of mirror-like metallic surfaces during plasma exposition
000864065 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000864065 3367_ $$2DRIVER$$aarticle
000864065 3367_ $$2DataCite$$aOutput Types/Journal article
000864065 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563951450_28766
000864065 3367_ $$2BibTeX$$aARTICLE
000864065 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864065 3367_ $$00$$2EndNote$$aJournal Article
000864065 520__ $$aVisible spectroscopy in fusion plasmas crucially depends on the optical properties of first mirrors withstanding a considerable amount of radiation and particle fluxes. As a result of this interaction the optical properties of the mirrors could be changed so that a cleaning of the mirror is regularly required. Thus the reflectance of the first mirror must be monitored in situ. The newly developed Doppler-Shifted Reflectance Measurement (DSRM) diagnostic provides the spectral reflectance of mirrors in the absence of any calibration sources. It is based on the emission of fast H/D atoms in a low density Ar-H plasma by applying a negative potential on the order of to the mirror surface. Until now, the experimental data were restricted to measure only the fast atoms emission at the Hα line. In this work we prove that the new technique also provides the mirror reflectance at the Hβ line (Cu) (486 nm) relevant for the charge-exchange recombination spectroscopy (CXRS) measurements of the He II line (468 nm) in ITER. Moreover, the DSRM diagnostic remains sensitive to the polarization of the reflected light of a W mirror. We present the first experimental data on the time-dependent regime of operation: in situ monitoring of the degradation of an Al mirror is shown as a function of the mirror temperature. The passive heating of the mirror was performed by the plasma itself, which makes the separation between the impact of high temperature and plasma erosion on the mirror reflectance for the temperatures above 500 K impossible. A very good agreement of the experimental and the theoretical data calculated using the Drude theory for the temperature below 500 K is found. For the temperatures above 500 K the degradation of the reflectance of the mirror is determined by the erosion of Al, which is confirmed by monitoring the Al I spectral lines in unison.
000864065 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000864065 588__ $$aDataset connected to CrossRef
000864065 7001_ $$0P:(DE-Juel1)5739$$aMarchuk, Oleksandr$$b1
000864065 7001_ $$0P:(DE-Juel1)169120$$aErtmer, Stephan$$b2$$ufzj
000864065 7001_ $$0P:(DE-Juel1)171567$$aGoriaev, Andrei$$b3$$ufzj
000864065 7001_ $$0P:(DE-HGF)0$$aIalovega, Mykola$$b4
000864065 7001_ $$0P:(DE-Juel1)167536$$aGöths, Beatrix$$b5$$ufzj
000864065 7001_ $$0P:(DE-Juel1)130068$$aKrasikov, Yury$$b6$$ufzj
000864065 7001_ $$0P:(DE-Juel1)4596$$aMertens, Philippe$$b7
000864065 7001_ $$0P:(DE-Juel1)130070$$aKreter, Arkadi$$b8
000864065 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2018.11.012$$gVol. 17, p. 302 - 306$$p302 - 306$$tNuclear materials and energy$$v17$$x2352-1791$$y2018
000864065 8564_ $$uhttps://juser.fz-juelich.de/record/864065/files/1-s2.0-S235217911830111X-main.pdf$$yOpenAccess
000864065 8564_ $$uhttps://juser.fz-juelich.de/record/864065/files/1-s2.0-S235217911830111X-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864065 909CO $$ooai:juser.fz-juelich.de:864065$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165722$$aForschungszentrum Jülich$$b0$$kFZJ
000864065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5739$$aForschungszentrum Jülich$$b1$$kFZJ
000864065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169120$$aForschungszentrum Jülich$$b2$$kFZJ
000864065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171567$$aForschungszentrum Jülich$$b3$$kFZJ
000864065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167536$$aForschungszentrum Jülich$$b5$$kFZJ
000864065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130068$$aForschungszentrum Jülich$$b6$$kFZJ
000864065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4596$$aForschungszentrum Jülich$$b7$$kFZJ
000864065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b8$$kFZJ
000864065 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000864065 9141_ $$y2019
000864065 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864065 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000864065 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000864065 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000864065 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000864065 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864065 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864065 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000864065 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864065 920__ $$lyes
000864065 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000864065 9801_ $$aFullTexts
000864065 980__ $$ajournal
000864065 980__ $$aVDB
000864065 980__ $$aUNRESTRICTED
000864065 980__ $$aI:(DE-Juel1)IEK-4-20101013
000864065 981__ $$aI:(DE-Juel1)IFN-1-20101013