000864084 001__ 864084
000864084 005__ 20240711085701.0
000864084 0247_ $$2doi$$a10.3762/bjnano.10.147
000864084 0247_ $$2Handle$$a2128/22531
000864084 0247_ $$2altmetric$$aaltmetric:63980294
000864084 0247_ $$2WOS$$aWOS:000476926400002
000864084 037__ $$aFZJ-2019-03991
000864084 041__ $$aEnglish
000864084 082__ $$a620
000864084 1001_ $$0P:(DE-Juel1)179146$$aZoller, Florian$$b0$$eCorresponding author$$ufzj
000864084 245__ $$aFlexible freestanding MoS 2 -based composite paper for energy conversion and storage
000864084 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2019
000864084 3367_ $$2DRIVER$$aarticle
000864084 3367_ $$2DataCite$$aOutput Types/Journal article
000864084 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1564050272_20040
000864084 3367_ $$2BibTeX$$aARTICLE
000864084 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864084 3367_ $$00$$2EndNote$$aJournal Article
000864084 520__ $$aThe construction of flexible electrochemical devices for energy storage and generation is of utmost importance in modern society. In this article, we report on the synthesis of flexible MoS2-based composite paper by high-energy shear force milling and simple vacuum filtration. This composite material combines high flexibility, mechanical strength and good chemical stability. Chronopotentiometric charge–discharge measurements were used to determine the capacitance of our paper material. The highest capacitance achieved was 33 mF·cm−2 at a current density of 1 mA·cm−2, demonstrating potential application in supercapacitors. We further used the material as a cathode for the hydrogen evolution reaction (HER) with an onset potential of approximately −0.2 V vs RHE. The onset potential was even lower (approximately −0.1 V vs RHE) after treatment with n-butyllithium, suggesting the introduction of new active sites. Finally, a potential use in lithium ion batteries (LIB) was examined. Our material can be used directly without any binder, additive carbon or copper current collector and delivers specific capacity of 740 mA·h·g−1 at a current density of 0.1 A·g−1. After 40 cycles at this current density the material still reached a capacity retention of 91%. Our findings show that this composite material could find application in electrochemical energy storage and generation devices where high flexibility and mechanical strength are desired.Keywords: flexible composites; hydrogen evolution reaction (HER); lithium ion batteries (LIBs); molybdenum disulfide; nanoarchitectonics; supercapacitors
000864084 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000864084 588__ $$aDataset connected to CrossRef
000864084 7001_ $$0P:(DE-HGF)0$$aLuxa, Jan$$b1
000864084 7001_ $$00000-0001-7248-5906$$aBein, Thomas$$b2
000864084 7001_ $$0P:(DE-HGF)0$$aFattakhova-Rohlfing, Dina$$b3
000864084 7001_ $$0P:(DE-HGF)0$$aBouša, Daniel$$b4
000864084 7001_ $$00000-0002-1391-4448$$aSofer, Zdeněk$$b5
000864084 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.10.147$$gVol. 10, p. 1488 - 1496$$p1488 - 1496$$tBeilstein journal of nanotechnology$$v10$$x2190-4286$$y2019
000864084 8564_ $$uhttps://juser.fz-juelich.de/record/864084/files/2190-4286-10-147.pdf$$yOpenAccess
000864084 8564_ $$uhttps://juser.fz-juelich.de/record/864084/files/2190-4286-10-147.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864084 909CO $$ooai:juser.fz-juelich.de:864084$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864084 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179146$$aForschungszentrum Jülich$$b0$$kFZJ
000864084 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000864084 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000864084 9141_ $$y2019
000864084 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864084 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000864084 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2017
000864084 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000864084 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000864084 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864084 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864084 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864084 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864084 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000864084 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864084 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864084 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000864084 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864084 920__ $$lyes
000864084 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000864084 9801_ $$aFullTexts
000864084 980__ $$ajournal
000864084 980__ $$aVDB
000864084 980__ $$aUNRESTRICTED
000864084 980__ $$aI:(DE-Juel1)IEK-1-20101013
000864084 981__ $$aI:(DE-Juel1)IMD-2-20101013