001     864090
005     20250129092429.0
024 7 _ |a 10.1117/1.JRS.13.032507
|2 doi
024 7 _ |a 2128/22817
|2 Handle
024 7 _ |a WOS:000475321800001
|2 WOS
037 _ _ |a FZJ-2019-03995
082 _ _ |a 620
100 1 _ |a Neubert, Tom
|0 P:(DE-Juel1)133921
|b 0
|e Corresponding author
245 _ _ |a System-on-module-based long-life electronics for remote sensing imaging with CubeSats in low-earth-orbits
260 _ _ |a Bellingham Wash.
|c 2019
|b SPIE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568638155_13620
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a CubeSats have become very popular science platforms in the past decades, leading to a continuously increasing number of developers in the academic field. For science missions, customized payload electronics have to be developed, depending on measurement tasks and requirements. Especially for the deployment of complex remote sensing payloads, state-of-the-art performance is needed to provide operational control and specific data processing, e.g., for image sensors. Highly integrated system-on-module (SoM) architectures offer low resource requirements regarding power and mass, but moderate to high processing power capabilities. However, a requirement to use a standard SoM in a satellite is to quantify its radiation tolerance. The radiation environment has been modeled, estimating the hazards at module level and reducing the risks to an acceptable level by applying appropriate mitigation techniques. This approach results in a sensor electronics design that combines hardware and software redundancies to assure system availability and reliability for long-life science missions in low earth orbits. Integrated in a miniaturized limb sounding instrument for atmospheric remote sensing imaging, the payload electronics will be deployed on a technology demonstration satellite for in-orbit verification.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rongen, Heinz
|0 P:(DE-Juel1)133931
|b 1
700 1 _ |a Fröhlich, Denis
|0 P:(DE-Juel1)169462
|b 2
700 1 _ |a Schardt, Georg
|0 P:(DE-Juel1)133933
|b 3
700 1 _ |a Dick, Markus
|0 P:(DE-Juel1)140595
|b 4
700 1 _ |a Nysten, Tobias
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zimmermann, Egon
|0 P:(DE-Juel1)133962
|b 6
700 1 _ |a Kaufmann, Martin
|0 P:(DE-Juel1)129128
|b 7
700 1 _ |a Olschewski, Friedhelm
|0 P:(DE-Juel1)177834
|b 8
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 9
770 _ _ |a CubeSats and NanoSats for Remote Sensing
773 _ _ |a 10.1117/1.JRS.13.032507
|g Vol. 13, no. 03, p. 1 -
|0 PERI:(DE-600)2382410-4
|n 03
|p 032507
|t Journal of applied remote sensing
|v 13
|y 2019
|x 1931-3195
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864090/files/032507_1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864090/files/032507_1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864090
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)133921
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133931
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169462
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133933
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)140595
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)177834
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL REMOTE SENS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21