Home > Publications database > The LAPW Method with Eigendecomposition Based on the Hari--Zimmermann Generalized Hyperbolic SVD > print |
001 | 864105 | ||
005 | 20221109161716.0 | ||
024 | 7 | _ | |a 10.1137/19M1277813 |2 doi |
024 | 7 | _ | |a 2128/25754 |2 Handle |
024 | 7 | _ | |a WOS:000600650100021 |2 WOS |
037 | _ | _ | |a FZJ-2019-04005 |
082 | _ | _ | |a 510 |
100 | 1 | _ | |a Singer, Sanja |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a The LAPW Method with Eigendecomposition Based on the Hari--Zimmermann Generalized Hyperbolic SVD |
260 | _ | _ | |a Philadelphia, Pa. |c 2020 |b SIAM |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1601033550_15197 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this paper we propose an accurate, highly parallel algorithm for the generalized eigendecomposition of a matrix pair $(H, S)$, given in a factored form $(F^{\ast} J F, G^{\ast} G)$. Matrices $H$ and $S$ are generally complex and Hermitian, and $S$ is positive definite. These type of matrices emerge from the representation of the Hamiltonian of a quantum mechanical system in terms of an overcomplete set of basis functions. This expansion is part of a class of models within the broad field of Density Functional Theory, which is considered the golden standard in Condensed Matter Physics. The overall algorithm consists of four phases, the second and the fourth being optional, where the two last phases are computation of the generalized hyperbolic SVD of a complex matrix pair $(F,G)$, according to a given matrix $J$ defining the hyperbolic scalar product. If $J = I$, then these two phases compute the GSVD in parallel very accurately and efficiently. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |x 1 |c PHD-NO-GRANT-20170405 |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |
536 | _ | _ | |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM) |0 G:(DE-Juel1)SDLQM |c SDLQM |f Simulation and Data Laboratory Quantum Materials (SDLQM) |x 2 |
588 | _ | _ | |a Dataset connected to arXivarXiv |
700 | 1 | _ | |a Di Napoli, Edoardo |0 P:(DE-Juel1)144723 |b 1 |e Corresponding author |u fzj |
700 | 1 | _ | |a Novaković, Vedran |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Čaklović, Gayatri |0 P:(DE-Juel1)176648 |b 3 |u fzj |
773 | _ | _ | |a 10.1137/19M1277813 |g Vol. 42, no. 5, p. C265 - C293 |0 PERI:(DE-600)1468391-x |n 5 |p C265–C293 |t SIAM journal on scientific computing |v 42 |y 2020 |x 0196-5204 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/864105/files/1907.08560.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/864105/files/1907.08560.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:864105 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)144723 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)176648 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |l Supercomputing & Big Data |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SIAM J SCI COMPUT : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|