001     864116
005     20210130002435.0
024 7 _ |a 10.1016/j.neuroimage.2019.116042
|2 doi
024 7 _ |a pmid:31344485
|2 pmid
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a altmetric:64070139
|2 altmetric
024 7 _ |a WOS:000491861000017
|2 WOS
037 _ _ |a FZJ-2019-04014
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Kuo, Po-Chih
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Brain dynamics and connectivity networks under natural auditory stimulation.
260 _ _ |a Orlando, Fla.
|c 2019
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1575528586_2091
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The analysis of functional magnetic resonance imaging (fMRI) data is challenging when subjects are under exposure to natural sensory stimulation. In this study, a two-stage approach was developed to enable the identification of connectivity networks involved in the processing of information in the brain under natural sensory stimulation. In the first stage, the degree of concordance between the results of inter-subject and intra-subject correlation analyses is assessed statistically. The microstructurally (i.e., cytoarchitectonically) defined brain areas are designated either as concordant in which the results of both correlation analyses are in agreement, or as discordant in which one analysis method shows a higher proportion of supra-threshold voxels than does the other. In the second stage, connectivity networks are identified using the time courses of supra-threshold voxels in brain areas, contingent upon the classifications derived in the first stage. In an empirical study, fMRI data were collected from 40 young adults (19 males, average age 22.76 ± 3.25), who underwent auditory stimulation involving sound clips of human voices and animal vocalizations under two operational conditions (i.e., eyes-closed and eyes-open). The operational conditions were designed to assess confounding effects due to auditory instructions or visual perception. The proposed two-stage analysis demonstrated that stress modulation (affective) and language networks in the limbic and cortical structures were respectively engaged during sound stimulation, and presented considerable variability among subjects. The network involved in regulating visuomotor control was sensitive to the eyes-open instruction, and presented only small variations among subjects. A high degree of concordance was observed between the two analyses in the primary auditory cortex which was highly sensitive to the pitch of sound clips. Our results have indicated that brain areas can be identified as concordant or discordant based on the two correlation analyses. This may further facilitate the search for connectivity networks involved in the processing of information under natural sensory stimulation.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Tseng, Yi-Li
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zilles, Karl
|0 P:(DE-Juel1)131714
|b 2
700 1 _ |a Suen, Summit
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eickhoff, Simon B
|0 P:(DE-Juel1)131678
|b 4
700 1 _ |a Lee, Juin-Der
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Cheng, Philip E
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Liou, Michelle
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.neuroimage.2019.116042
|g p. 116042 -
|0 PERI:(DE-600)1471418-8
|p 116042
|t NeuroImage
|v 202
|y 2019
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/864116/files/116042.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/864116/files/116042.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:864116
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131714
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2017
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21