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Introduction

* Brain-like learning capabilities can now be produced in non-spiking . ) : T
artificial neural networks using Machine Learning [1] “H";tél learning and hyperparameter optimization on

» Learning to Learn [2] is a specific optimization solution for acquiring

. . . * Gradient-free optimizers
constraints to improve learning performance

* Two loop optimization process

Learning to Learn on High Performance Computing (HPC)

* Problem: Optimization problems run on single node or embarrassingly Optimizer Suter |
: Evolutionary strategies uter 100
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* Handling complex problems over large sets for arbitrary tools and hyperparameters
. _ _ tolearn task T
algorithms parallelized on multi-node HPCs
 High throughput hyperparameter search and optimization at (exa-) scale e elers
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Examples

Optimizing a Neural Network

L2L can engrave priors in RSNNs L2L and Structural Plasticity

Optimizer: Ensemble Kalman Filter [3]
Optimizer: Backpropagation through

time (BPTT)

Optimizers: Simulated annealing,

Gradient Descent, Cross Entropy - Updating the weights of an artificial

. . . neural network (e.g. Convolutional
* Quter-loop family of tasks: Sinusoids

with different amplitudes and phases
» After outer loop training, the Recurrent

Spiking Neural Network (RSNN) has a
prior of sinusoidal functions

Outer-loop training Outer-loop testing
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[Bellec, Salaj, Subramoney et al. NeurlPS 2018]

* [ndividual instances of NEST [4] are
parallelized with MPI| — inner loop

* Multiple independent instances
launched on JURECA — outer loop

Simulated Annealing Gradient Descent
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Network)
* Requires only the evaluation of the

forward propagation (no backprop)
* Trained on MNIST dataset
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Outlook

* Development and benchmarking of
other optimizers for biological and
artificial learning

« Better support for real time close-loop
learning setups

* Support for long training
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