000864119 001__ 864119
000864119 005__ 20210130002436.0
000864119 0247_ $$2doi$$a10.1088/1361-648X/ab2ffb
000864119 0247_ $$2ISSN$$a0953-8984
000864119 0247_ $$2ISSN$$a1361-648X
000864119 0247_ $$2altmetric$$aaltmetric:64338740
000864119 0247_ $$2pmid$$apmid:31284270
000864119 0247_ $$2WOS$$aWOS:000478807300002
000864119 037__ $$aFZJ-2019-04016
000864119 082__ $$a530
000864119 1001_ $$0P:(DE-Juel1)171240$$aBrahimi, Samy$$b0
000864119 245__ $$aImpact of single atomic defects and vacancies on the magnetic anisotropy energy of CoPt thin films
000864119 260__ $$aBristol$$bIOP Publ.80390$$c2019
000864119 3367_ $$2DRIVER$$aarticle
000864119 3367_ $$2DataCite$$aOutput Types/Journal article
000864119 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1564488484_25723
000864119 3367_ $$2BibTeX$$aARTICLE
000864119 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864119 3367_ $$00$$2EndNote$$aJournal Article
000864119 520__ $$aThe impact of surface vacancies and single adatoms on the magnetic properties of tetragonal L10 CoPt thin films is investigated from first principles. We consider Co and Fe single adatoms deposited on a Pt-terminated thin film while a Pt adatom is assumed to be supported by a Co-terminated film. The vacancy is injected in the top-surface layer of the films with both types of termination. After finding the most stable location of the defects, we discuss their magnetic properties tied to those of the substrate and investigate the magnetocrystalline anisotropy energy (MAE). Previous simulations (Brahimi et al 2016 J. Phys.: Condens. Matter 28 496002) predicted a large out-of-plane surface MAE for the Pt-terminated CoPt films (4 meV per f.u.) in contrast to in-plane surface MAE for Co-terminated films (−1 meV per f.u.). Here, we find that the surface MAE is significantly modified upon the presence of the atomic defects. All investigated defects induce an in-plane MAE, which is large enough for Fe adatom and Pt vacancy to switch the surface MAE from out-of-plane to in-plane for the Pt-terminated films. Interestingly, among the investigated defects Pt vacancy has the largest effect on the MAE in contrast to Co vacancy, which induced the smallest but still significant effect. This behavior is explained in terms of the orbital moment anisotropy of the thin films.
000864119 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000864119 536__ $$0G:(EU-Grant)681405$$aDynasore - Dynamical magnetic excitations with spin-orbit interaction in realistic nanostructures (681405)$$c681405$$fERC-2015-CoG$$x1
000864119 588__ $$aDataset connected to CrossRef
000864119 7001_ $$0P:(DE-HGF)0$$aBouzar, Hamid$$b1
000864119 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b2$$eCorresponding author
000864119 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ab2ffb$$p435803$$tJournal of physics / Condensed matter Condensed matter$$v31$$x1361-648X$$y2019
000864119 8564_ $$uhttps://juser.fz-juelich.de/record/864119/files/Brahimi_2019_J._Phys.__Condens._Matter_31_435803.pdf$$yRestricted
000864119 8564_ $$uhttps://juser.fz-juelich.de/record/864119/files/Brahimi_2019_J._Phys.__Condens._Matter_31_435803.pdf?subformat=pdfa$$xpdfa$$yRestricted
000864119 909CO $$ooai:juser.fz-juelich.de:864119$$pec_fundedresources$$pVDB$$popenaire
000864119 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)171240$$aExternal Institute$$b0$$kExtern
000864119 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000864119 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b2$$kFZJ
000864119 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000864119 9141_ $$y2019
000864119 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864119 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000864119 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864119 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000864119 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2017
000864119 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864119 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864119 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864119 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864119 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864119 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864119 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864119 920__ $$lyes
000864119 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000864119 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000864119 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000864119 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000864119 980__ $$ajournal
000864119 980__ $$aVDB
000864119 980__ $$aI:(DE-Juel1)IAS-1-20090406
000864119 980__ $$aI:(DE-Juel1)PGI-1-20110106
000864119 980__ $$aI:(DE-82)080009_20140620
000864119 980__ $$aI:(DE-82)080012_20140620
000864119 980__ $$aUNRESTRICTED