000864152 001__ 864152
000864152 005__ 20220930130216.0
000864152 0247_ $$2doi$$a10.1038/s41598-019-47341-y
000864152 0247_ $$2Handle$$a2128/22549
000864152 0247_ $$2pmid$$apmid:31358817
000864152 0247_ $$2WOS$$aWOS:000477701800081
000864152 037__ $$aFZJ-2019-04022
000864152 082__ $$a600
000864152 1001_ $$0P:(DE-Juel1)141899$$aYun, Seong Dae$$b0
000864152 245__ $$aEvaluating the Utility of EPIK in a Finger Tapping fMRI Experiment using BOLD detection and Effective Connectivity
000864152 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000864152 3367_ $$2DRIVER$$aarticle
000864152 3367_ $$2DataCite$$aOutput Types/Journal article
000864152 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1569575904_21917
000864152 3367_ $$2BibTeX$$aARTICLE
000864152 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864152 3367_ $$00$$2EndNote$$aJournal Article
000864152 520__ $$aEPI with Keyhole (EPIK) is a hybrid imaging technique that overcomes many of the performance disadvantages associated with EPI. Previously, EPIK was shown to provide a higher temporal resolution and fewer image distortions than EPI whilst maintaining comparable performance for the detection of BOLD-based signals. This work carefully examines the putative enhanced sensitivity of EPIK in a typical fMRI setting by using a robust fMRI paradigm – visually guided finger tapping – to demonstrate the advantages of EPIK for fMRI at 3 T. The data acquired were directly compared to the community standard fMRI protocol using single-shot EPI to ascertain a clear comparison. Each sequence was optimised to offer its highest possible spatial resolution for a given set of imaging conditions, i.e., EPIK and EPI achieved an in-planar resolution of 2.08 × 2.08 mm2 with 32 slices and 3.13 × 3.13 mm2 with 36 slices, respectively. EPIK demonstrated a number of clear improvements, such as superior spatial resolution with favourable robustness against susceptibility artefacts. Both imaging sequences revealed robust activation within primary motor, premotor and visual regions, although significantly higher BOLD amplitudes were detected using EPIK within the primary and supplementary motor areas. Dynamic causal modelling, in combination with Bayesian model selection, identified identical winning models for EPIK and EPI data. Coupling parameters reflecting task-related modulations and the connectivity of fixed connections were comparably robust for both sequences. However, fixed connections from the left motor cortex to the right visual cortex were estimated as being significantly more robust for EPIK data.
000864152 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000864152 588__ $$aDataset connected to CrossRef
000864152 7001_ $$0P:(DE-Juel1)131747$$aWeidner, Ralph$$b1
000864152 7001_ $$0P:(DE-Juel1)131748$$aWeiss, Peter H.$$b2
000864152 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b3$$eCorresponding author
000864152 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-47341-y$$gVol. 9, no. 1, p. 10978$$n1$$p10978$$tScientific reports$$v9$$x2045-2322$$y2019
000864152 8564_ $$uhttps://juser.fz-juelich.de/record/864152/files/30038725990009365002INVOIC2676151372001.pdf
000864152 8564_ $$uhttps://juser.fz-juelich.de/record/864152/files/30038725990009365002INVOIC2676151372001.pdf?subformat=pdfa$$xpdfa
000864152 8564_ $$uhttps://juser.fz-juelich.de/record/864152/files/Yun_2019_Scientific_Reports_Evaluating%20the%20utility%20of%20EPIK%20in%20a%20finger%20tapping%20fMRi%20experiment.pdf$$yOpenAccess
000864152 8564_ $$uhttps://juser.fz-juelich.de/record/864152/files/Yun_2019_Scientific_Reports_Evaluating%20the%20utility%20of%20EPIK%20in%20a%20finger%20tapping%20fMRi%20experiment.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864152 8767_ $$82676151372$$92019-07-16$$d2019-07-18$$eAPC$$jZahlung erfolgt$$pSREP-19-05031A$$zFZJ-2019-03889
000864152 909CO $$ooai:juser.fz-juelich.de:864152$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000864152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141899$$aForschungszentrum Jülich$$b0$$kFZJ
000864152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131747$$aForschungszentrum Jülich$$b1$$kFZJ
000864152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131748$$aForschungszentrum Jülich$$b2$$kFZJ
000864152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000864152 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000864152 9141_ $$y2019
000864152 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864152 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000864152 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000864152 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864152 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000864152 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000864152 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000864152 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000864152 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864152 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864152 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864152 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864152 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864152 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864152 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864152 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000864152 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864152 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000864152 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864152 920__ $$lyes
000864152 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000864152 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000864152 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x2
000864152 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x3
000864152 980__ $$ajournal
000864152 980__ $$aVDB
000864152 980__ $$aI:(DE-Juel1)INM-3-20090406
000864152 980__ $$aI:(DE-Juel1)INM-4-20090406
000864152 980__ $$aI:(DE-Juel1)INM-11-20170113
000864152 980__ $$aI:(DE-82)080010_20140620
000864152 980__ $$aAPC
000864152 980__ $$aUNRESTRICTED
000864152 9801_ $$aAPC
000864152 9801_ $$aFullTexts