001     864156
005     20240711113847.0
024 7 _ |a 10.1007/s11085-019-09931-z
|2 doi
024 7 _ |a 0030-770X
|2 ISSN
024 7 _ |a 1573-4889
|2 ISSN
024 7 _ |a WOS:000487923500003
|2 WOS
024 7 _ |a 2128/23696
|2 Handle
037 _ _ |a FZJ-2019-04026
082 _ _ |a 540
100 1 _ |a Vorkötter, C.
|0 P:(DE-Juel1)171660
|b 0
|e Corresponding author
245 _ _ |a Oxide Dispersion Strengthened Bond Coats with Higher Alumina Content: Oxidation Resistance and Influence on Thermal Barrier Coating Lifetime
260 _ _ |a Dordrecht [u.a.]
|c 2019
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1570005063_15601
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The oxidation resistance of the bond coat in thermal barrier coating systems has significant influence on thermal cycling performance of the protective coating. In this study, the influence of varying the alumina content of plasma-sprayed oxide dispersion strengthened bond coats with CoNiCrAlY matrix material on the oxidation resistance was analysed by thermogravimetric analysis, SEM and TEM. Yttrium ions at the alumina scale grain boundaries and the grain size in the scale appear as major factors influencing oxidation properties. The ODS material with 2, 10 and 30 wt% alumina content was applied in TBC systems as an additional thin bond coat. The thermal cycling performance of those advanced TBC systems, in burner rig tests, was evaluated with respect to the ODS material properties. Thermal cycling behaviour is in good correlation with the isothermal oxidation resistance. All results indicate that TBC systems with 10 wt% alumina content in the ODS bond coat have a superior thermal cycling performance, as compared to ODS bond coats with lower or higher alumina content.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hagen, S. P.
|0 P:(DE-Juel1)164166
|b 1
700 1 _ |a Pintsuk, G.
|0 P:(DE-Juel1)129778
|b 2
|u fzj
700 1 _ |a Mack, D. E.
|0 P:(DE-Juel1)129630
|b 3
|u fzj
700 1 _ |a Virtanen, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Guillon, O.
|0 P:(DE-Juel1)161591
|b 5
|u fzj
700 1 _ |a Vaßen, R.
|0 P:(DE-Juel1)129670
|b 6
|u fzj
773 _ _ |a 10.1007/s11085-019-09931-z
|0 PERI:(DE-600)2018581-9
|n 3-4
|p 167-194
|t Oxidation of metals
|v 92
|y 2019
|x 1573-4889
856 4 _ |u https://juser.fz-juelich.de/record/864156/files/Vork%C3%B6tter2019_Article_OxideDispersionStrengthenedBon.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/864156/files/Vork%C3%B6tter2019_Article_OxideDispersionStrengthenedBon.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2019-07-29. Available in OpenAccess from 2020-07-29.
|u https://juser.fz-juelich.de/record/864156/files/Post%20Referee%20Version.pdf
856 4 _ |y Published on 2019-07-29. Available in OpenAccess from 2020-07-29.
|x pdfa
|u https://juser.fz-juelich.de/record/864156/files/Post%20Referee%20Version.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864156
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OXID MET : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21