001     864167
005     20240711113848.0
024 7 _ |a 10.1016/j.nme.2018.05.002
|2 doi
024 7 _ |a 2128/22554
|2 Handle
024 7 _ |a WOS:000435611400037
|2 WOS
037 _ _ |a FZJ-2019-04033
082 _ _ |a 624
100 1 _ |a Schmitz, J.
|0 P:(DE-Juel1)166256
|b 0
|e Corresponding author
245 _ _ |a WCrY smart alloys as advanced plasma-facing materials – Exposure to steady-state pure deuterium plasmas in PSI-2
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1564646766_5550
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper the impact of steady state pure D plasma on WCrY smart alloys at ion energies of 120 and 220 eV is reported. For this purpose a comparison with simultaneously exposed pure W samples is drawn. Different analysis techniques employed for pre- and post-plasma sample analysis hint at a significant depletion of Cr and enrichment of W for lower ion energies. Preferential sputtering leads to enhanced volumetric loss at 220 eV. Analysis of redeposited material indicated local redeposition of Cr. Modelling the ion irradiation with SDTrimSP is used to further interpret experimental results. Depending on the sample temperature during plasma exposure and the magnitude of the ion flux, diffusion of Cr towards the surface is a determining factor for erosion of smart alloys for higher ion energies.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Litnovsky, A.
|0 P:(DE-Juel1)130090
|b 1
|u fzj
700 1 _ |a Klein, F.
|0 P:(DE-Juel1)166427
|b 2
|u fzj
700 1 _ |a Wegener, T.
|0 P:(DE-Juel1)161367
|b 3
700 1 _ |a Tan, X. Y.
|0 P:(DE-Juel1)171237
|b 4
700 1 _ |a Rasinski, M.
|0 P:(DE-Juel1)162160
|b 5
|u fzj
700 1 _ |a Mutzke, A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hansen, P.
|0 P:(DE-Juel1)164146
|b 7
700 1 _ |a Kreter, A.
|0 P:(DE-Juel1)130070
|b 8
|u fzj
700 1 _ |a Pospieszczyk, A.
|0 P:(DE-Juel1)130122
|b 9
|u fzj
700 1 _ |a Möller, S.
|0 P:(DE-Juel1)139534
|b 10
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 11
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 12
700 1 _ |a Breuer, U.
|0 P:(DE-Juel1)138352
|b 13
|u fzj
700 1 _ |a Gonzalez-Julian, J.
|0 P:(DE-Juel1)162271
|b 14
700 1 _ |a Bram, M.
|0 P:(DE-Juel1)129591
|b 15
|u fzj
773 _ _ |a 10.1016/j.nme.2018.05.002
|g Vol. 15, p. 220 - 225
|0 PERI:(DE-600)2808888-8
|p 220 - 225
|t Nuclear materials and energy
|v 15
|y 2018
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864167/files/1-s2.0-S2352179117301023-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864167/files/1-s2.0-S2352179117301023-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864167
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166256
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)164146
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)139534
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)138352
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)162271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)129591
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
920 1 _ |0 I:(DE-Juel1)S-OO-20090406
|k S-OO
|l Sicherheit und Strahlenschutz;Objektsicherung,Objektsicherungsdienst
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)S-OO-20090406
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21