Hauptseite > Publikationsdatenbank > lMicrofluidic Particle Sorting in Concentrated Erythrocyte Suspensions > print |
001 | 864170 | ||
005 | 20240610121343.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevApplied.12.014051 |2 doi |
024 | 7 | _ | |a 2128/22553 |2 Handle |
024 | 7 | _ | |a WOS:000477919700002 |2 WOS |
024 | 7 | _ | |a altmetric:54319599 |2 altmetric |
037 | _ | _ | |a FZJ-2019-04036 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Holm, Stefan H. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a lMicrofluidic Particle Sorting in Concentrated Erythrocyte Suspensions |
260 | _ | _ | |a College Park, Md. [u.a.] |c 2019 |b American Physical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1582038294_32444 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a An important step in diagnostics is the isolation of specific cells and microorganisms of interest from blood. Since such bioparticles are often present at very low concentrations, throughput needs to be as high as possible. In addition, to ensure simplicity, a minimum of sample preparation is important. Therefore, sorting schemes that function for whole blood are highly desirable. Deterministic lateral displacement (DLD) devices have proven to be very precise and versatile in terms of a wide range of sorting parameters. To better understand how DLD devices perform for blood as the hematocrit increases, we carry out measurements and simulations for spherical particles in the micrometer range which move through DLD arrays for different flow velocities and hematocrits ranging from pure buffer to concentrated erythrocyte suspensions mimicking whole blood. We find that the separation function of the DLD array is sustained even though the blood cells introduce a shift in the trajectories and a significant dispersion for particles whose diameters are close to the critical size in the device. Simulations qualitatively replicate our experimental observations and help us identify fundamental mechanisms for the effect of hematocrit on the performance of the DLD device |
536 | _ | _ | |a 553 - Physical Basis of Diseases (POF3-553) |0 G:(DE-HGF)POF3-553 |c POF3-553 |f POF III |x 0 |
536 | _ | _ | |a Blood flow in microvascular networks (jics21_20181101) |0 G:(DE-Juel1)jics21_20181101 |c jics21_20181101 |f Blood flow in microvascular networks |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Zhang, Zunmin |0 P:(DE-Juel1)166080 |b 1 |
700 | 1 | _ | |a Beech, Jason P. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 3 |
700 | 1 | _ | |a Fedosov, Dmitry A. |0 P:(DE-Juel1)140336 |b 4 |e Corresponding author |
700 | 1 | _ | |a Tegenfeldt, Jonas O. |0 P:(DE-HGF)0 |b 5 |
773 | _ | _ | |a 10.1103/PhysRevApplied.12.014051 |g Vol. 12, no. 1, p. 014051 |0 PERI:(DE-600)2760310-6 |n 1 |p 014051 |t Physical review applied |v 12 |y 2019 |x 2331-7019 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/864170/files/PhysRevApplied.12.014051.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/864170/files/PhysRevApplied.12.014051.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:864170 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130665 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)140336 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-553 |2 G:(DE-HGF)POF3-500 |v Physical Basis of Diseases |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV APPL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-2-20110106 |k ICS-2 |l Theorie der Weichen Materie und Biophysik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|