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1. Introduction

In extracellular recordings of single or multiple neurons in the mammalian cortex, clearly the most

prominent feature is the occurrence of action potentials, or spikes. These recordings are usually called

spike trains and modeled stochastically as processes of discrete events in continuous time. Another

observation, which is also quite ubiquitous, is the tendency of neurons to produce ’bursts’ of spikes, i.e.,

a number of spikes within a very short time period. In other words, some neurons produce more bursts

than one would expect on the basis of independent ’random’ repetitive firing. Thus, here the event of a

’burst’ signifies the occurrence of comparatively many spikes in a comparatively short interval of time.

One could also describe it as a short temporary increase of the neuron’s spike rate.∗

The occurrence of bursts in spike trains has been investigated by many authors. Both, potential

biophysical mechanisms for the generation of bursts [1–3] and possible functional purposes of bursts

in information transmission and learning have been discussed [1–5]. Depending on these assumptions

or research hypotheses, several slightly different ’definitions’ of bursts have been used and correspond-

ingly different methods of burst detection have been proposed [1, 6–12]. They all share the basic

intuition given above. Although the original methods for burst detection were meant for single spike

trains, they are sometimes also applied to multi-unit recordings [13], which may require additional con-

siderations and parameters. There are a few reviews [9, 14] that compare the various burst-detection

methods, for example in terms the number of parameters they need or the type of information from the

spike train they require for their definition.

1.1. Burst detection

From a statistical point of view the characterization of a burst points towards a significance test, i.e.,

a quantification of the deviation of the event from a naive null hypothesis of ’independent firing’ in

the direction of ’burstiness’. The measurement of ’burstiness’, however, is a bit problematic because

it involves two parameters: one could fix a time interval τ as a parameter and consider the number n

of spikes in this interval as a test statistic (the greater the number n, the more bursty is the event), or

one could fix a number n of spikes as a parameter and consider the time interval τ between the first

and the last spike in sequence of n spikes (the shorter the interval τ, the more bursty is the event).

Both approaches have been taken [6, 10], but the problem is that one has to examine the data first in

order to make a reasonable choice of the parameter τ or n. Furthermore, because of non-stationarity

of neural responses and of individual differences between neurons, it may in practice be allowed to

examine only one particular neuron under one particular experimental condition, i.e., the same data

that are subsequently evaluated statistically for burst detection. Another issue is that the comparison

of the ’degree of burstiness’ would be difficult if the degrees are obtained using different combinations

of observed values of τ and n.

If one wants to analyze bursts for their properties, such as their duration or their spike frequency,

more complex definitions are needed which do not fix one of these parameters in advance. One of

the first methods of this type was introduced by Legendy [15]. He identified the significant events by

minimizing the Poisson probability P[Tk+n − Tk ≤ τ] (where Tk is the time of the kth spike) over both n

and τ, thus using this probability for trading off between τ and n. The logarithm of this probability he

∗A problem with this description is that the determination of a spike rate usually requires temporal averaging across a reasonably

long time interval that may be longer than the duration of the burst.
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called ’burst surprise’. Legendy’s surprise can be used to compare the degree of burstiness of different

events of the type [Tk+n−Tk ≤ τ] and it provides a useful and simple method of burst detection. Clearly

one can also use any other theoretical or empirical distribution P for the computation of Legendy’s

surprise, but the Poisson probability is easy to calculate and needs only one parameter to be estimated

from the data: the neuron’s firing rate.

In this paper we provide a larger variety of burst detection methods, by introducing different prob-

ability distributions for the surprise computation, derived from various interspike interval (ISI) dis-

tributions other than the exponential distribution, which is assumed in Legendy’s surprise. We also

introduce different ways of minimizing the probability P[Tk+n − Tk ≤ τ], resulting in a different defini-

tion of novelty and surprise, by imposing stricter criteria on bursts than Legendy did.

1.2. Burst significance

It is tempting to interpret the burst surprise as a measure of the significance of burst occurrence, but

this is a wrong interpretation (which has occasionally been made in previous studies) because the burst

surprise as defined by Legendy does not represent a proper statistical significance of a burst event.

Since the burst surprise is obtained through minimization of the Poisson probability P[Tk+n − Tk ≤ τ]

over n and τ, the obtained probability is obviously biased toward smaller values. This problem can be

solved in a principled way by using Legendy’s surprise as the test statistics and determining its survival

probabilities [16]. It turned out that this type of problem and the corresponding solution are also seen in

many other scenarios (e.g., detection of ’pauses’ in single spike trains, detection of spike coincidences

in multi-unit spike trains [12, 17–19], and detection of spatio-temporal spike patterns [20, 21]), which

asks for a broader statistical theory that could then also be related to information theory [22]. In the

context of this broader theory Legendy’s measure is renamed as ’novelty’, saving the term ’surprise’

for the proper significance measure to be used for statistical significance tests.

Several authors have suggested modifications of Legendy’s method [9,12,23,24], but none of them

properly dealt with this transition from ’novelty’ to ’surprise’. A comparison of the different new

methods attempted in these papers remains somewhat debatable, because in each method the number of

bursts detected depends strongly on a threshold value that cannot easily be compared among different

methods. In fact, for a proper comparison one would need exactly the transition from ’novelty’ to

’surprise’ (and statistical significance) mentioned before.

Recently we realized that this transition, which was first described for the exponential ISI distribu-

tion (corresponding to Poisson spike train), can be done in the same way for any renewal process with

an arbitrary ISI distribution. This resulted in a generalization of Legendy’s method and its statistical

improvement to arbitrary ISI distributions. In this paper we describe how this transition is carried out

in detail.

1.3. Organization of the paper

In the following Section (Section 2), we first define ’burst novelty’ and ’burst surprise’ formally,

and then describe how the surprise is derived from the novelty in practice. Based on these measures,

we propose a method for detecting bursts in a given spike train. We extend the earlier method assuming

the exponential ISI distribution to the one assuming arbitrary renewal processes allowing to incorporate

more knowledge about the neuron’s ISI-distribution into the null hypothesis.
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Then in Section 3 we illustrate how the choice of the null hypothesis affects the detection of a burst

by application of the method to artificial spike trains with gamma ISI distributions. We also show an

application of these ideas to a set of 156 spike trains recorded from macaque motor cortex [25] and

discuss the possibility to use it to determine the latencies of evoked activities of the single units in

single trials.

Finally, in Section 4 we conclude the paper with a brief discussion, mentioning in particular the

importance of the null hypothesis for this approach that is ’non-Bayesian’ in spirit, because it does not

involve any statistical model of burst generation, as e.g., in [26], or of the total network that generates

the one (or several) observed spike train(s).

2. Materials and Methods

2.1. Definitions of burst novelty and burst surprise

We consider a spike train, i.e., a sequence of spike-event times: T1 < T2 < T3 < ..., and the

corresponding ISIs Xi = Ti+1 − Ti. We define the burst novelty Nk and the burst surprise S k for the

spike train up to one particular spike k at time Tk. For mathematical convenience, and in order to

avoid discussing the boundary effects in the beginning and the end of the spike train, we assume in our

definitions a sequence (Xi)i∈Z.

As a null hypothesis we assume that the random variables Xi (i ∈ Z) are independent and all have

the same probability distribution (i.i.d.). For the experimentally most common situations where we

do not have very long spike trains, it has been suggested to use the most naive assumption for the

ISI distribution, namely the exponential distribution. This corresponds to the Poisson distribution of

spike events and requires only one parameter to estimate [15,16,22]. If more data are available for the

same neuron, one can also consider a more refined representation of the ISI distribution, for example,

a gamma distribution (with two parameters to estimate), a gamma distribution with a fixed refractory

period (i.e., a minimal value d > 0 of the random variables Xi), or the direct estimate of the neuron’s

empirical ISI distribution.

Our definition of burst novelty is based on accumulated ISIs defined as:

Xl,k =

l
∑

j=1

Xk− j, (2.1)

which is the sum of l consecutive ISIs preceding spike k; in other words, it is the time difference

between the (k − l)th and the kth spikes: Xl,k = Tk − Tk−l. Its (cumulative) distribution function is

Fl(t) = P[Xl,k ≤ t], which is independent of k. As in [22], we introduce the following definitions:

Definition 1. The novelty of an ISI sequence of length l ending at spike k is:

Nl,k = − log2[Fl(Xl,k)] (2.2)

and the burst novelty of the spike train up to spike k is defined as:

Nk = max
l

Nl,k. (2.3)

Its distribution function F(t) = P[Nk ≤ t] is independent of k.
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Definition 2.

a) The surprise function of the novelty (the log of the survival function) is defined as:

S :















R+ → R+

x→ − log2(1 − F(x)).
(2.4)

b) The burst surprise for the spike train up to spike k is:

S k = S (Nk). (2.5)

c) The burst size for a burst ending at spike k is defined as:

Bk = arg max
l

Nl,k

and the corresponding burst onset and offset are defined at spikes bon
k
= k − Bk and boff

k
= k,

respectively.

It can be argued that this definition does not yet fully capture the intuition that a burst should be

a brief outburst of activity and hence it should not consist of a too large number of spikes. Also for

practical reasons it may be useful to restrict l up to a reasonable number. On the other hand, only one

ISI should perhaps also not be considered a burst. These considerations lead to an idea of restricting

the values of l over which Nl,k is maximized in Eq 2.3, for example one could use NM
k

:= max2≤l≤M Nl,k,

which introduces two more parameters: a minimal and a maximal value of l.

We also introduce a stricter definition of a burst by requiring that each subsequent ISI in a sequence

contributes to increasing the novelty when increasing l in Xl,k. In addition we require that the length of

a sequence is at least 2 ISIs, i.e., 3 spikes.

Definition 3. We define the strict burst novelty as

Ñk = NL
k , (2.6)

where L is the minimum l ≥ 2 that satisfies Nl+1,k < N l
k
− δ.

The parameter δ specifies how strictly the novelties Nl,k for sequences should increase along with

l. The strict burst surprise, burst size, onset and offset for strict burst novelty can be calculated in the

same manner as for the original burst novelty.

2.2. Burst detection

The idea behind these definitions is to use the (strict) novelty to detect bursts in a spike train and

to use the corresponding surprise to determine their statistical significance. Here we describe how the

(strict) burst novelty is practically calculated from a given spike train and how it is used to detect bursts.

The first step is the accumulation of consecutive ISIs: Xl,k =
∑l

j=1 Xk− j (Eq 2.1). For an incoming

spike train we begin with computing X1,2, then X2,3, X1,3, then X3,4, X2,4, X1,4 and so on. In practice a

limited number M of these accumulations will suffice, e.g., up to l = 50. Normally such a restriction

of l should not influence the detected bursts. This can be checked by looking at the distribution of the

detected burst sizes (see supplementary material).
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For these values of l the cumulative distribution functions Fl(Xl,k) of the sums Xl,k can be precom-

puted prior to the computation of Xl,k from the spike train. The functions Fl for different values of

l depend on the distribution of the random variable Xk. For the family of gamma distributions these

functions are available in closed form; otherwise they have to be computed numerically or generated

from simulated spike trains following the null hypothesis. Once Fl are obtained, Nl,k can be calculated

for each Xl,k using Eq 2.2.

Next we compute the maximum of Nl,k w.r.t. l for a fixed k, where we can introduce some reasonable

stopping criterion, either the provisionally introduced maximal value M of l, or the (usually) stricter

criterion introduced in the definition of the strict novelty (Def. 3). The obtained maximum is the burst

novelty Nk up to spike k. We repeat this for every k and obtain a series of burst novelties Nk for all

spike times Tk.

Finally we can use a predefined threshold Nth on the (strict) novelty for the detection of bursts.

One can set the threshold according to a desired significance level as explained in Section 2.3, or

one could use some conventional value that was used in previous studies (e.g., Nth = 10 as in [15]).

Typically a burst event gives rise to novelty values greater than the threshold for several consecutive

spikes (see Figure 1 for an example). If one is interested in identifying the spikes belonging to a burst

event, firstly the end of a burst can be obtained as the spike k∗ with the maximum novelty among the

supra-threshold novelties, and then the beginning of this burst can be obtained as the burst onset bon
k∗

of spike k∗, as shown in Figure 1. Otherwise, if one is only interested in detecting the onset of a burst

as a latency from a certain reference event (e.g., stimulus onset time in a recording of stimulus evoked

activity), one can take bon
k′

of spike k′ that first crossed the threshold after the reference event as the

onset of a burst. This approach is taken in our application of the method to real spike train data shown

in Section 3.2.

2.3. Statistical significance measured by burst surprise

In order to determine the significance of an observed novelty value Nobs we have to calculate the

so-called ’survival probability’ P[N ≥ Nobs]. The burst surprise S (Nobs) (Eq 2.5) is the logarithm

of this probability: it translates the (strict) novelty value into the logarithm of a burst significance

probability. A closed-form representation of the surprise as a function of novelty can be obtained, for

example for gamma distributions, but it contains Mth-order multiple integrations which allow neither

the derivation of an analytic form nor a numerical integration within a reasonable computation time.

Thus, in order to derive a surprise value for an arbitrary novelty value, the surprise S as a function of

novelty N, or in other words the novelty-to-surprise (N-to-S) curve, needs to be estimated. In this study

we take a Monte-Carlo approach for this estimation, where we sample a large number of ISIs from a

very long spike train (specifically, for the results shown below, we used spike trains of 1, 000, 000

spikes), generated according to the ISI distribution that we assumed in the null hypothesis for novelty

computation. Given these samples, we numerically estimate the distribution function F(x) of the burst

novelty (computed with the maximum sequence length M = 50) in Eq 2.4.

A plot of the N-to-S curve (e.g., Figure 2 for the null hypothesis of an exponential ISI distribution)

can be used to translate a given significance level to a novelty threshold for burst detection, or con-

versely, an arbitrary novelty value to a significance probability. Some examples for this are described

in Section 3.1.
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2.4. Statistical evaluation of burst properties

In order to analyze the statistics of various properties of individual bursts, like burst size (number

of spikes in a burst), burst duration, in-burst spike rate, burst novelty or significance, one first has to

count the burst events occurring in a spike train. The first step in such an analysis is to plot the (strict)

burst novelty as a function N(t) of time as in Figure 1. The natural candidates for burst events are

the local maxima of this function. Depending on the purpose of the analysis one may decide to count

only local maxima with statistically significant novelty values. In addition one may decide not to count

local maxima close to other maxima, e.g., not to count burst events that overlap with a more significant

neighboring event. In this paper we do not yet explore these possibilities, we just show the distribution

of burst sizes of significant bursts in the supplementary material.

2.5. Experimental data

We apply our burst detection method for detection of single trial latency of rate increase in spiking

activity of macaque motor and pre-motor cortex during a reach-to-grasp experiment [27]. Example

datasets from this experiment are available from a data publication by Brochier et al. [25]. We use

for our method application one of these datasets (session i140703), which was recorded with a 100-

electrode Utah array and resulted after spike sorting in 156 simultaneously recorded spike trains. The

behavioral task in the experiment was, briefly, that the monkey had to reach to an object, grasp it with a

predefined grip type, and pull it at a predefined force level (see [25] for more details). The information

about the grip type (either a precision grip or a side grip) was delivered by a visual cue at the beginning

of a preparatory period of 1000 ms, followed by the GO signal, which also provided information about

the force level (high or low). In this recording session the monkey performed the task in 141 trials. In

our analysis we consider the preparatory period as the baseline, and aim to detect rate changes in the

period starting at the GO signal. This rate change is known to be related to the arm movement [28].

Here we ignore the specific grip type and force level for the detection of the rate increase latencies, and

leave a behavior related analysis for a further project.

3. Results

In this section we first calibrate the proposed burst detection method, with special emphasis on the

effects of the choice of different null hypotheses on burst detection performance. For doing that we

apply the method to artificial spike train datasets of which we know the ground truth, i.e., what the

parameters of the process are and thus the correct null hypothesis. Then we apply the method to spike

train data recorded from macaque motor cortex to demonstrate the effects of the selection of the null

hypothesis in a practical application to real spike train data, where one needs to estimate the parameters

for the null hypothesis from the data themselves.

Figure 1 shows an example application of our burst detection method to an artificial Poisson spike

train with an injected burst, which is generated as a Poisson process with a higher rate (λb = 3.5 Hz)

than the baseline rate (λ0 = 1 Hz) for a short time interval. Here, the novelty values are computed

with the null hypothesis of a Poisson ISI distribution of rate λ = 1 (the baseline rate), and the novelty

threshold for burst detection is set to N = 10, as in [15].
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dataset contains spike trains of 156 single units, and the majority of them exhibits a temporary increase

in their firing rates after the GO signal to perform a reaching arm movement. The basic idea of latency

detection is to calculate the burst novelty for a single trial spike train and identify the first significant

burst after a certain trigger event, which is the GO signal in the present application. The identified

burst is typically interpreted as the reaction of the system to the trigger event, to which neurons tend to

respond by an increase of their firing rates, as mentioned above.

Thus, we are looking for a behaviorally induced rate increase, or a sequence of shorter ISIs. Es-

sentially, we are looking for any deviation of the ISI statistics from those in the ’baseline period’, here

taken as the prepatory period before the GO signal. In that period we derive the shape κ and the scale

β through the following relations: E(Xi) = κβ and Var(Xi) = κβ
2, where E(Xi) and Var(Xi) are the

estimates of the mean and the variance of the ISIs, respectively.

Given these parameters, the burst novelty for each spike in a single trial spike train is calculated,

and the rate increase onset is detected as the onset of the first significant burst after the GO signal.

Here the threshold novelty value for burst detection is determined based on a significance level (we use

α = 0.05), using a N-to-S curve estimated with the baseline ISI distribution parameters. To test how the

performance depends on the choice of the ISI distribution parameters as the null hypothesis, we also

apply the method with a mismatched parameter set: the shape parameter of 1 and scale parameter of

κβ, which corresponds to the assumption of Poisson spike train. We hereafter refer to this mismatched

assumption as Poisson assumption, while the original assumption is referred to as gamma assumption.

Figure 5 shows raster plots of representative units, which exhibit a clearly visible rate increase

typically around 500 ms after the GO signal. The estimated rate change onset times in single trials

are shown with orange plus marks (gamma assumption) and blue crosses (Poisson assumption). The

trials are sorted along the Y-axis in ascending order of the detected latency (by gamma assumption, all

panels). The unit shown in Figure 5 upper left appears to change clearly its firing rate in relation to the

GO signal in every trial. In this case the rate changes were so clear that the application of method with

either assumption detected significant rate changes in all trials (the number of detected rate changes for

both cases are shown in the figure legend). The estimated rate change onset times were quite consistent

between the two assumptions, but not completely identical.

The unit shown in Figure 5 upper right changes the rate less clearly in relation to the GO signal

in the sense that not in every trial a rate change is detected, and the two null hypotheses yield large

differences. With the gamma assumption, the method detects rate changes in 134 out of 141 trials,

while the Poisson assumption results in detection of rate changes in 95 trials. Such a reduction in the

number of detected rate changes is explained by the tendency for false negatives shown in Figure 4

right. Since the estimated κ of this unit is 2.3916, Poisson assumption results in a significance level of

p < 0.001, which is much stricter than the desired level of p = 0.05. In many trials, the onset detected

with the Poisson assumption is later than the one detected with the gamma assumption in the same

trial. This happens when one burst is detected as significant only for the gamma assumption but not

for the Poisson assumption, and then a second significant burst (for both assumptions) occurred after

the first one. The opposite case, where the first burst is significant only for the Poisson assumption

but not for the gamma assumption, is less likely to happen because of the above mentioned difference

in the significance level of the two assumptions. When different bursts are detected by the different

assumptions, the onset of the burst that first crossed the threshold is typically earlier than the onset of

the other burst, but this is not always the case.
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null hypothesis for given data is important for detecting bursts in the data at a desired significance level;

the use of a wrong null hypothesis results in false negative or false positive burst detections, depending

on the property of the data. Our derivation of the significance measure, i.e., the burst surprise for spike

trains with arbitrary ISI distributions enables us to examine quantitatively the false negative/positive

effect of the use of a wrong null hypothesis. We have also demonstrated this effect in the application to

real spike train data from macaque motor cortex, where neurons typically generate spike trains which

deviate from a Poisson process. The result of burst detection actually shows the false negative/positive

effects depending on the (ir-)regularity of the spike train, which are consistent with the quantification

based on artificial spike trains.

The essential idea of measuring ’surprise’ in neural activity was first suggested in [32] and later

elaborated statistically leading to the definition and first evaluation of the burst surprise in [16]; it was

first applied to cat visual cortex data in [15]. Our method consists of two stages: in the first stage bursts

are detected by Legendy’s method, now called burst novelty. This is computationally simple and could

even be used online to detect interesting events, or to quickly scan a huge dataset of massively parallel

recording. In the second stage the surprise is calculated from novelty in order to allow an evaluation in

terms of statistical significance, which usually requires more computation time to generate and evaluate

long spike trains from the null hypothesis. To our knowledge this second step has not been applied to

real spike train data before.

We demonstrated the usefulness of our method in an application on latency detection, where we

used gamma distributions with different shape parameters as null hypotheses. We have shown that

the correct estimation of the shape parameter (in addition to the rate) is important† for a reasonable

setting of the burst detection threshold and therefore for the detection of all ’responses’ of individual

neurons. Just assuming a Poisson distribution is not sufficient in this application. This would be due

to a comparatively large regularity in the spiking activity and the ISI distribution of the neurons in

motor cortex, which needs to be incorporated in the null hypothesis. Such a large regularity of motor

cortex neurons has been shown to be a common feature throughout mammalian species, as well as a

large irregularity of hippocampus neurons [33, 34]. It has also been reported that neurons in macaque

parietal association areas show regular spike trains beyond Poisson assumption [35]. Our method

would be particularly suitable for the detection of bursts in recordings from these areas, due to its

ability to take into account the (ir-)regularity of spike trains in order to avoid false negative/positive

detections of bursts.

The extension of the strict novelty method by improving the null hypothesis to include also other ISI

distributions leads to an increased sensitivity of the method for spike trains that deviate from Poisson

processes. However, bursts in spike trains may have several other reasons discussed in the literature,

e.g., that other biophysical processes are activated and thus the spikes in the burst express a serial

correlation in time [2, 36, 37]. Fortunately the surprise method does not require a statistical model of

all these processes. Our null hypothesis considers ISIs that may deviate from Poisson, but are still

following independently each other (renewal). Thus our burst detection is based on the deviation from

the null hypothesis based on a) a temporary increase of the firing rate for the same shape parameter, b)

a temporary deviation from the shape parameter assumed in the null hypothesis, or c) a deviation from

the renewal hypothesis, or any combination of these.

†One needs to ensure the stationarity of the spike train used for this estimation, because firing rate modulation in a spike train leads to

underestimation of its shape parameter. This calls for a careful selection of the baseline period from which the parameters are estimated.
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In general, applying the burst surprise method to different sets of neurons and experimental settings

shows the need of a careful choice of the null hypothesis, since the burst-surprise is a statistical measure

of the deviation from this null hypothesis in the direction of burstiness. In the application to response

onset detection we have presented here a pilot study on one data set. In a more extensive study we

plan to apply this method to more spike train data and to test better models of the ISI distribution,

including the use of the empirical ISI distribution. This would ensure that the measured deviation

from the null hypothesis is (almost) only concerned with violations of the i.i.d. assumption, e.g.,

with increased correlation between subsequent ISIs or with temporary changes in the (baseline) ISI

distribution, for example by increasing firing rate or increasing probability of small ISIs. In addition

we plan to compare this method to other methods of response latency estimation [38–42], which are

mostly based on statistical estimation of rate change.
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Supplementary

Restricting the novelty maximization in the computation of the burst novelty

The computation of the burst novelty Nk in Eq 2.3 in principle involves a maximization over all

the spikes preceding spike k until the beginning of the spike train. In practice this may be too time

consuming and therefore it would be reasonable to restrict this process to some fixed number M of

preceding spikes. If one chooses a number M, e.g., M = 50 as we did in our experimental evaluation,

one can plot the distribution of resulting burst sizes, and argue that the bursts contributing to the last

bin (i.e., size 50) could have been longer without the restriction. The figure below shows some plots
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