000864177 001__ 864177
000864177 005__ 20240711085704.0
000864177 0247_ $$2doi$$a10.1016/j.jpowsour.2019.226751
000864177 0247_ $$2Handle$$a2128/22573
000864177 0247_ $$2WOS$$aWOS:000480664400015
000864177 037__ $$aFZJ-2019-04042
000864177 041__ $$aEnglish
000864177 082__ $$a620
000864177 1001_ $$0P:(DE-Juel1)161483$$aThaler, Florian$$b0$$eCorresponding author$$ufzj
000864177 245__ $$aRedox stability of metal-supported fuel cells with nickel/gadolinium-doped ceria anode
000864177 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000864177 3367_ $$2DRIVER$$aarticle
000864177 3367_ $$2DataCite$$aOutput Types/Journal article
000864177 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626071142_10312
000864177 3367_ $$2BibTeX$$aARTICLE
000864177 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864177 3367_ $$00$$2EndNote$$aJournal Article
000864177 520__ $$aMetal-supported fuel cells (MSCs) are promising candidates for not only stationary but also mobile applications. Their appeal is in their potential to withstand reoxidation of the anode, which might occur by an interruption of the fuel supply or an emergency shutdown of the fuel cell system. A novel nickel/gadolinium-doped ceria anode (Ni/GDC) was recently introduced in a MSC concept of Plansee, almost doubling power density compared to cells with a nickel/yttria-doped zirconia (Ni/YSZ) anode. In this study, both cell concepts are compared concerning their ability to tolerate harsh redox cycles. Therefore, controlled redox cycles of the anodes were conducted at different temperatures. The response of the cell’s power output to the redox cycling experiments was continuously recorded. In the case of MSCs with a Ni/YSZ anode, strong degradation occurs after redox cycling. In contrast, cells with a Ni/GDC anode exhibit significantly improved redox tolerance and cell performance improves with the number of redox cycles. For understanding this behavior, microstructural investigations of the Ni/GDC anode and the adjacent electrolyte were performed by FIB-SEM. The long-term redox behavior of MSCs with a Ni/GDC anode was also investigated by conducting more comprehensive redox cycles at 400 °C, 500 °C, and 600 °C.
000864177 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000864177 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000864177 7001_ $$0P:(DE-Juel1)161337$$aUdomsilp, David$$b1$$ufzj
000864177 7001_ $$0P:(DE-HGF)0$$aSchafbauer, Wolfgang$$b2
000864177 7001_ $$0P:(DE-HGF)0$$aBischof, Cornelia$$b3
000864177 7001_ $$0P:(DE-HGF)0$$aFukuyama, Yosuke$$b4
000864177 7001_ $$0P:(DE-HGF)0$$aMiura, Yohei$$b5
000864177 7001_ $$0P:(DE-HGF)0$$aKawabuchi, Mari$$b6
000864177 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Shunsuke$$b7
000864177 7001_ $$0P:(DE-HGF)0$$aTakemiya, Satoshi$$b8
000864177 7001_ $$0P:(DE-HGF)0$$aNenning, Andreas$$b9
000864177 7001_ $$0P:(DE-HGF)0$$aOpitz, Alexander K.$$b10
000864177 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b11$$ufzj
000864177 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2019.226751$$p226751, 9 pages$$tJournal of power sources$$v434$$x0378-7753$$y2019
000864177 8564_ $$uhttps://juser.fz-juelich.de/record/864177/files/1-s2.0-S0378775319307220-main.pdf$$yRestricted
000864177 8564_ $$uhttps://juser.fz-juelich.de/record/864177/files/Redox%20stability%20of%20metal-supported%20fuel%20cells%20with%20nickel%20gadolinium-doped%20ceria%20anode.pdf$$yPublished on 2019-06-20. Available in OpenAccess from 2021-06-20.
000864177 8564_ $$uhttps://juser.fz-juelich.de/record/864177/files/Redox%20stability%20of%20metal-supported%20fuel%20cells%20with%20nickel%20gadolinium-doped%20ceria%20anode.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-06-20. Available in OpenAccess from 2021-06-20.
000864177 909CO $$ooai:juser.fz-juelich.de:864177$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161483$$aForschungszentrum Jülich$$b0$$kFZJ
000864177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161337$$aForschungszentrum Jülich$$b1$$kFZJ
000864177 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aPlansee SE, Austria$$b2
000864177 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aPlansee SE, Austria$$b3
000864177 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aNissan Motor Co. Ltd. EV System Laboratory, Japan$$b4
000864177 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aNissan Motor Co. Ltd. EV System Laboratory, Japan$$b5
000864177 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aNissan Motor Co. Ltd. EV System Laboratory, Japan$$b6
000864177 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aNext-Generation Fuel Cell Research Center, Kyushu University, Japan$$b7
000864177 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aNext-Generation Fuel Cell Research Center, Kyushu University, Japan$$b8
000864177 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aInstitute of Chemical Technologies and Analytics, Research Group for Electrochemical Energy Conversion, TU, Wien, Austria$$b9
000864177 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aInstitute of Chemical Technologies and Analytics, Research Group for Electrochemical Energy Conversion, TU, Wien, Austria$$b10
000864177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b11$$kFZJ
000864177 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000864177 9141_ $$y2019
000864177 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864177 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000864177 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864177 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000864177 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2017
000864177 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2017
000864177 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864177 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864177 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864177 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864177 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864177 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000864177 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864177 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864177 920__ $$lyes
000864177 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000864177 9801_ $$aFullTexts
000864177 980__ $$ajournal
000864177 980__ $$aVDB
000864177 980__ $$aI:(DE-Juel1)IEK-1-20101013
000864177 980__ $$aUNRESTRICTED
000864177 981__ $$aI:(DE-Juel1)IMD-2-20101013