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ABSTRACT

Sequence processing has been proposed to be the universal com-

putation performed by the neocortex. The Hierarchical Temporal

Memory (HTM) model provides a mechanistic implementation of

this form of processing. While the model accounts for a number

of neocortical features, it is based on networks of highly abstract

neuron and synapse models updated in discrete time. Here, we re-

formulate the model in terms of a network of spiking neurons with

continuous-time dynamics to investigate how neuronal parameters

such as cell-intrinsic time constants and synaptic weights constrain

the sequence-processing speed.
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1 INTRODUCTION

Learning and processing temporal sequences have been suggested

to be the fundamental computation performed by the neocortex [1–

3]. The Hierarchical Temporal Memory (HTM) model constitutes a

mechanistic description of this type of computation [4]. It accounts

for the speci�c anatomical structure of cortical (pyramidal) neurons,

explains the functional role of dendritic action potentials, and learns

continuously by means of local learning rules. The model can simul-

taneously learn and predict multiple sequences in streams of data

and is robust with respect to failure of network elements and noise.

So far, implementations of this model are based on highly abstract

models of neurons and synapses with discrete-time dynamics. To

foster an understanding of the sequence processing characteristics
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in humans and other mammals, the model needs to be reformulated

in terms of biophysical principles and parameters.

In this study, we deliver a continuous-time implementation of

the temporal-memory algorithm proposed by the HTM theory [5],

which comprises networks of spiking neurons, dendritic action

potentials, backpropagating action potentials, lateral inhibition,

and spike timing dependent structural plasticity. In the framework

of this model, we investigate to what extent the sequence processing

speed is constrained by neuronal parameters such as cell-intrinsic

time constants and synaptic weights. We test the implementation

in a task where the network learns random sequences of letters,

and study the role of the inter-stimulus interval on the sequence

prediction error, thereby deriving lower and upper bounds for the

sequence processing speed.

2 MODEL

In the following, we will provide an overview of the network model

components. A detailed description of the model and parameter

values can be found in Appendix A and B.

2.1 Network model

The network consists ofM minicolumns. Each minicolumn is com-

posed of NE excitatory (pyramidal) neurons (“E neurons”), that are

recurrently connected to an inhibitory interneuron (Fig. 1A). The

minicolumns are laterally connected via a sparse, random, plastic

connectivity between the E neurons. Each E neuron receives KEE

randomly chosen connections fromE neurons in otherminicolumns.

Initially, these KEE connections are ’potential’ connections. Only

during the learning process, these potential connections can turn

into e�ective synaptic connections (see Sec. 2.3).

Feedforward inputs representing the sequence elements are ap-

plied to the network in the form of Nstim external spike sources,

each being connected to the E neurons of a random subset of L

minicolumns (Fig. 1B).

2.2 Neuron model

The excitatory neurons are described as multicompartment models

comprising a soma and ND dendritic branches (Fig. 2). Each of the

ND + 1 compartments is described by a leaky integrate-and-�re

(LIF) dynamics [6]. Each dendritic compartment receives excitatory

KD = KEE/ND inputs from E neurons in other minicolumns. Upon

threshold crossing, the dendritic compartments generate action

potentials (“NMDA spikes”) that are propagated to the soma via
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A NETWORK MODEL

Summary

Populations ensemble of minicolumns, each composed of an excitatory and an inhibitory subpopulation

Connectivity
• sparse random connectivity between excitatory neurons subject to spike-timing-

dependent structural plasticity

• local recurrent connectivity between excitatory and inhibitory neurons (static)

Neuron model
• excitatory neurons: multi-compartment model with one soma compartment and one

compartment per dendritic branch, each compartment modeled by leaky integrate-and-

�re (LIF) dynamics

• inhibitory neurons: point neuron (LIF)

Synapse model additive (linear) exponential postsynaptic currents (PSCs)

Plasticity spike-timing-dependent structural plasticity in excitatory-to-excitatory connections

Input external spike sources, connected to excitatory neurons

Populations

Ensemble of minicolumns {i |i = 1, . . . ,M}

Name Elements Size

Ei excitatory neurons in minicolumn i nE

Ii inhibitory neurons in minicolumn i nI

Connectivity

Source Target Pattern

Ei (∀i) Ej (∀j) random, �xed in-degrees KEE and delays dEE, plastic weights JEE, ji (EE connections)

Ei (∀i) Ii (∀i) all-to-all, �xed delays dIE, �xed weights JIE (suprathreshold) (IE connections)

Ii (∀i) Ei (∀i) all-to-all, �xed delays dEI, �xed weights JEI (EI connections)

Ii (∀i) Ii (∀i) none (II connections)

no self-connections (“autapses”), no multiple connections (“multapses”)

Neuron

Excitatory neurons multi-compartment model with one soma compartment and ND dendritic branches

• soma compartment:

– leaky-integrate-and-�re (LIF) dynamics (see below)

• dendritic compartments:

– LIF dynamics (see below)

– KD (excitatory) synapses per dendritic branch

Inhibitory neurons point neuron (LIF)

Dynamics of single

compartments (LIF)

dynamics of membrane potential Vc (t) of compartment c:

• spike emission at time tc
k
if Vc (t

c
k
) ≥ θ

• subthreshold dynamics: τm ÛVc = −Vc + RmIc (t) ∀k, ∀t <
[

tc
k
, tc
k
+ τref

)

• reset and refractoriness: Vc (t) = Vr ∀k, ∀t ∈
(

tc
k
, tc
k
+ τref

]

Coupling between

compartments of

excitatory neurons

• pulse-coupled interaction (spikes)

• dendrite→ soma coupling: linear exponential post-synaptic current, �xed weight JSD
(PSP amplitude), time constant τSD, delay dSD
• soma→ dendrite coupling (action-potential backpropagation): linear exponential post-

synaptic current, �xed weight JDS (PSP amplitude, suprathreshold), time constant τDS,

delay dDS
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Synapse

Model current based synapses with additive exponential post-synaptic currents (PSCs):

Ii (t) =
∑N
j=1 Îi j (PSC ∗ sj )(t)

with PSC(t) = e−t/τsΘ(t) and Heaviside function Θ(t) =

{

1 t ≥ 0

0 else

y post-synaptic potential PSPi j (t) = Îi j
Rmτs

τs − τm

(

e−t/τs − e−t/τm
)

Θ(t)

Plasticity spike-timing dependent structural plasticity for EE connections; each synapse described by

permanence P (maturity) and synaptic weight JEE;

update of Pi j and JEE,i j for each postsynaptic spike at time tpost:

if ∆T − ∆tP < tpost − tpre < ∆T + ∆tP then

P ← P + ∆f P

else

P ← P − ∆dP

end if

if P > Pmax then

P = Pmax

end if

if P > Pθ then

JEE ←W

else

JEE ← 0

end if

here, tpre denotes the spike timing of the presynaptic neuron. ∆T is the interstimulus timing,

∆tP the range from ∆T at which the permanence is incremented and ∆P is the amount used to

increment the permanence.

Input

• Nstim spike-generating sources, each representing a character in the sequences

• each spike source connected to a random subset of L minicolumns via a synaptic weight JEF and a delay of dEF

Training

• repetitive stimulation of network (k times) using the same batch of data.

• a batch of data contains S sequences, each sequence is composed of C characters

Initial conditions

• for every network realization: initial permanences and membrane potentials (at time 0) randomly and indepen-

dently drawn from uniform distributions in intervals [P0,θP) and [Vr ,θ ), respectively

Simulation details

• network simulations performed in NEST version 2.16.0 [13]

• synchronous update using exact integration of the system dynamics on a discrete time grid with step size ∆t [14]

Table 1: Description of the network model



Knoxville, Tennessee ’19, July 23–25, 2019, Knoxville, Tennessee Younes Bouhadjar, et al.

B PARAMETERS

Name Value Description

Network

nE 30 number of excitatory neurons per minicolumns

nI 1 number of inhibitory neurons per minicolumns

M 10 number of minicolumns

(Potential) Connectivity

KEE 180 number of excitatory inputs per excitatory neuron (EE in-degree)

KEI 1 number of inhibitory inputs per excitatory neuron (EI in-degree)

KIE nE number of excitatory inputs per inhibitory neuron (IE in-degree)

KII 0 number of inhibitory inputs per inhibitory neuron (II in-degree)

Excitatory neurons

Soma

τm 10ms membrane time constant

τref 30ms absolute refractory period

Cm 250 pF membrane capacity

Vr 0.0mV reset potential

θ 15mV spike threshold

Dendrite

ND 1 number of dendritic branches per excitatory neuron

KD 180 (KD = KEE) number of synapses per dendritic branch

τm 3ms membrane time constant

τref 2ms absolute refractory period

Cm 250 pF membrane capacity

Vr 0.0mV reset potential

θ 15mV spike threshold

Somato-dendritic coupling

JSD 9.0 mV dendrite→ soma coupling strength (amplitude of PSP evoked

by dendritic spike)

JDS 8.25mV soma→ dendrite coupling strength (amplitude of dendritic PSP

evoked by somatic spike)

τSD 30ms time constant of dendrite→ soma coupling (post-synaptic cur-

rent)

τDS 2ms time constant of soma→ dendrite coupling (post-synaptic cur-

rent)

dSD 0.1ms delay of dendrite→ soma coupling

dDS 0.1ms delay of soma→ dendrite coupling

Inhibitory neurons

τm 5ms membrane time constant

τref 2ms absolute refractory period

Cm 250 pF membrane capacity

Vr 0.0mV reset potential

θ 15mV spike threshold
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Name Value Description

Synapse

JEE,i j {0,W } E-neuron→ E-neuron connections strength (amplitude of den-

dritic PSP of neuron i evoked by somatic spike of neuron j)

W 7.5mV amplitude of PSP evoked by somatic spike in the case of a mature

synapse, θE =
θ
W = 2

JIE 3.75mV E-neuron→ I-neuron connections strength (amplitude of the

inhibitory neuron i evoked by somatic spike of neuron i), θI =
θ
JIE
= 4

JEI −22.5mV I-neuron → E-neuron connections strength (amplitude of so-

matic PSP of neuron i evoked by the inhibitory neuron i)

τs,EE 2ms time constant of E-neuron → E-neuron connection (post-

synaptic current)

τs, IE 0.5ms time constant of E-neuron→ I-neuron connection (post-synaptic

current)

τsEI 2ms time constant of I-neuron→ E-neuron connection (post-synaptic

current)

dEE 5ms delay of E-neuron→ E-neuron connection

dIE 0.1ms delay of E-neuron→ I-neuron connection

dEI 0.1ms delay of I-neuron→ E-neuron connection

Plasticity

Pi j [Pmin, Pθ ] synaptic permanence

∆f P 3 permanence increment

∆dP 1 permanence decrement

W 9.0mV weight (JEE) of mature synapses

Pθ 2300 synapse maturity threshold

Pmax 4000 upper permanence bound

Pmin 2000 lower permanence bound

∆tP 5 interval for synaptic increment

Input

Nstim 10 number of external spike sources

L 1 number of minicolumns connected to the same spike source

S 2 number of sequences per batch

C 10 number of characters per sequence

A 10 length of the total alphabet

JEF 16.5mV Feedforward input→ E-neuron connections strength (amplitude

of somatic PSP of neuron i evoked by feedforward spike)

τs,EF 3.16ms time constant of Feedforward input → E-neuron connection

(post-synaptic current)

dEF 0.1ms delay of Feedforward input→ E-neuron connection

Simulation

∆T [3, 180] ms interstimulus timing

∆t 0.1ms time resolution

k 400 training steps

Table 2: Network and simulation parameters


