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ABSTRACT
Sequence processing has been proposed to be the universal com-
putation performed by the neocortex. The Hierarchical Temporal
Memory (HTM) model provides a mechanistic implementation of
this form of processing. While the model accounts for a number
of neocortical features, it is based on networks of highly abstract
neuron and synapse models updated in discrete time. Here, we re-
formulate the model in terms of a network of spiking neurons with
continuous-time dynamics to investigate how neuronal parameters
such as cell-intrinsic time constants and synaptic weights constrain
the sequence-processing speed.

CCS CONCEPTS
•Networks→ Network dynamics; • Computing methodologies
→ Massively parallel algorithms; Temporal reasoning.

KEYWORDS
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1 INTRODUCTION
Learning and processing temporal sequences have been suggested
to be the fundamental computation performed by the neocortex [1–
3]. The Hierarchical Temporal Memory (HTM) model constitutes a
mechanistic description of this type of computation [4]. It accounts
for the specific anatomical structure of cortical (pyramidal) neurons,
explains the functional role of dendritic action potentials, and learns
continuously by means of local learning rules. The model can simul-
taneously learn and predict multiple sequences in streams of data
and is robust with respect to failure of network elements and noise.
So far, implementations of this model are based on highly abstract
models of neurons and synapses with discrete-time dynamics. To
foster an understanding of the sequence processing characteristics
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in humans and other mammals, the model needs to be reformulated
in terms of biophysical principles and parameters.

In this study, we deliver a continuous-time implementation of
the temporal-memory algorithm proposed by the HTM theory [5],
which comprises networks of spiking neurons, dendritic action
potentials, backpropagating action potentials, lateral inhibition,
and spike timing dependent structural plasticity. In the framework
of this model, we investigate to what extent the sequence processing
speed is constrained by neuronal parameters such as cell-intrinsic
time constants and synaptic weights. We test the implementation
in a task where the network learns random sequences of letters,
and study the role of the inter-stimulus interval on the sequence
prediction error, thereby deriving lower and upper bounds for the
sequence processing speed.

2 MODEL
In the following, we will provide an overview of the network model
components. A detailed description of the model and parameter
values can be found in Appendix A and B.

2.1 Network model
The network consists ofM minicolumns. Each minicolumn is com-
posed of NE excitatory (pyramidal) neurons (“E neurons”), that are
recurrently connected to an inhibitory interneuron (Fig. 1A). The
minicolumns are laterally connected via a sparse, random, plastic
connectivity between the E neurons. Each E neuron receives KEE
randomly chosen connections fromE neurons in otherminicolumns.
Initially, these KEE connections are ’potential’ connections. Only
during the learning process, these potential connections can turn
into effective synaptic connections (see Sec. 2.3).

Feedforward inputs representing the sequence elements are ap-
plied to the network in the form of Nstim external spike sources,
each being connected to the E neurons of a random subset of L
minicolumns (Fig. 1B).

2.2 Neuron model
The excitatory neurons are described as multicompartment models
comprising a soma and ND dendritic branches (Fig. 2). Each of the
ND + 1 compartments is described by a leaky integrate-and-fire
(LIF) dynamics [6]. Each dendritic compartment receives excitatory
KD = KEE/ND inputs from E neurons in other minicolumns. Upon
threshold crossing, the dendritic compartments generate action
potentials (“NMDA spikes”) that are propagated to the soma via

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Sketch of the network architecture. A) Each minicolumn is com-
posed of a number of excitatory neurons, which are recurrently connected
to an inhibitory neuron, and driven by a feed-forward input (stimulus)
representing an element in a sequence. B) The network is composed of a
number of minicolumns, each representing an element (e.g. ’A’, ’B’, ’C’)
in a sequence. Minicolumns are interconnected via (learned) excitatory
connections.

strong but subthreshold weights JSD [7, 8]. To enable spike tim-
ing dependent plasticity at the dendritic synapses, somatic action
potentials are backpropagated to the dendrite via suprathreshold
connections with weight JDS [9–11]. Inhibitory interneurons are
described as simple point neuron models with LIF dynamics.
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Figure 2: Sketch of the neuron model. Excitatory neurons (large white
circle) are composed of a soma and a number of dendritic compartments.
Each compartment is modeled as a leaky integrate-and-fire (LIF) unit. The
feed-forward input (’stimulus’) projects to the soma. Inputs from other
minicolumns arrive at the dendritic compartments. Connections between
the dendritic compartments and the soma are bidirectional to permit prop-
agation of dendritic spikes to the soma and backpropagation of somatic
spikes to the dendrites. Inhibitory (LIF) neurons are communicating with
the soma.

2.3 Synapse models
For all types of connection in the network, synapses are modeled as
exponential currents with amplitude Î , time constant τs and delay d .
We parameterize the strength of each connection by the weight J ,
which corresponds to the amplitude of the membrane potential de-
flection caused by a single synaptic event. We distinguish between
four types of connections:

EE synapses refer to connections from the somata of E neurons
to the dendrites of other E neurons. The strength of these con-
nections is determined by a Hebbian form of structural plasticity:
Each EE synapse is characterized by a permanence P and a weight
JEE. The permanence models the level of maturity of the synapse.
Premature synapses, i.e. synapses where P is below a threshold θP,
are not effective and assigned zero weight JEE = 0. If P > θP , JEE is
set to a fixed valueW , which is chosen such that the target neuron
generates a dendritic spike if θE presynaptic neurons fire collec-
tively. For each postsynaptic (dendritic) spike, the permanence P is
updated with an increment ∆f P or decrement ∆dP that depends on
the difference tpost − tpre between the timing of pre- and postsynap-
tic spikes. This form of spike timing dependent structural plasticity
mimics the plasticity mechanism used in the original HTM model,
and is also known from the neuroscience literature [12]. It promotes
the formation of connections between neurons that are consistently
activated in a sequence and the pruning of unused connections.

IE synapses represent the connections from the somata of E
neurons to the inhibitory neurons. The weights JIE are set such
that the collective firing of a certain number of θI E neurons in the
minicolumn causes the inhibitory neuron to fire.

EI synapses refer to connections from the inhibitory neurons
to the somata of E neurons in the respective minicolumn with a
strong negative weight JEI.

EF synapses characterize connections from the external feedfor-
ward input sources to the somata of E neurons with suprathreshold
weight JEF.

Apart from the EE connections, all synaptic weights are constant
(static).

2.4 Simulation details
The network simulations are performed in NEST version 2.16.0 [13].
Network states are synchronously updated using exact integration
of the system dynamics on a discrete time grid with step size δt
[14]. For every network realization, the initial permanences and
membrane potentials (at time 0) are drawn randomly and inde-
pendently from uniform distributions in the interval [P0,θP) and
[Vr ,θ ), respectively.

3 RESULTS
3.1 Sequence learning and prediction in

networks of spiking neurons
All neurons in a given minicolumn share the same feedforward
input. Before learning or at the beginning of a new sequence, a
feedforward spike will cause all neurons in the respective mini-
column to fire (Fig. 3A). In the HTM model, this is referred to as
columnar bursting. If the number of inputs to a dendritic branch
from a specific presynaptic minicolumn exceeds a threshold θE, the
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simultaneous activation of these presynaptic neurons results in a
dendritic spike, followed by a strong depolarization of the soma
which corresponds to the “predictive” state (Fig. 3B). Predictive neu-
rons receiving a feedforward input will fire earlier as compared
to nonpredictive neurons (Fig. 3C). The advanced spike of the pre-
dictive neurons will initiate a fast and strong inhibitory feedback
to the entire minicolumn, ultimately suppressing the firing of the
nonpredictive neurons.

As described in Sec. 2.3, the EE connections are subject to spike
timing dependent structural plasticity. Repetitive sequential activa-
tion of feedforward inputs (characters) during the learning therefore
leads to the formation of a connectivity structure that corresponds
to an imprint of the presented sequences in the sense that the acti-
vation of a certain minicolumn by a feedforward input will generate
dendritic spikes, i.e. a “prediction”, in a specific subset of neurons
in the minicolumns representing the next sequence element.

Figure 3:Membrane-potential responses to a feedforward input (black ar-
row; A), a suprathreshold dendritic input (gray arrow; B), and a combination
of feedforward and dendritic input (C). Bars mark spike times. A dendritic
spike preceding the feedforward input (as in C) can speed up somatic, and
hence, inhibitory firing, provided the time interval between the dendritic
spike and the feedforward input is in the right range (compare somatic and
inhibitory spikes in A and C). The advanced firing of the inhibitory neuron
suppresses somatic spiking in neurons of the same minicolumn that have
not received suprathreshold dendritic activation. Here, we used an E neuron
with ND = 1 dendritic compartment. The some of E neuron is connected to
an inhibitory neuron.

3.2 Sequence prediction performance
To test the sequence prediction performance, we repetitively stim-
ulate the network with batches (trials) of S = 2 sequences, each
sequence consisting of C = 10 characters randomly chosen (with

replacement) from an alphabet of lengthA = 10. Within a sequence,
the same character can occur multiple times. Each batch consists
of the same set of sequences with identical order.

The prediction error is continuously monitored and assessed
for every batch as follows: For each presentation of a character q
(feedforward input) at time t0, find all dendrites that are firing in the
time interval (t0 − ∆T , t0), with ∆T being the inter-stimulus timing.
If a minicolumn contains at least θI E neurons with firing dendrites,
this minicolumn is considered as active. The activation of mini-
columns is encoded in a binary vector z with zi = 1 (i = 1, . . . ,M)
if the ith minicolumn is active, and zi = 0 else. The prediction error
is computed as the Euclidean distance between z and the binary
target vector t representing the pattern of feedforward inputs for
each character q. At the end of each batch, we compute the total
prediction error by averaging over all characters within this batch.
When assessing the prediction error, we discard the first character
in each sequence.

After each new network instantiation, the initial normalized
prediction error is at 100%. With increasing number of training
episodes (presentation of a batch), the prediction error decreases as
the network explores and learns the sequences, and saturates after
about 300 episodes (Fig. 4). Note that the model accounts for context
dependence: prediction of the next character depends not only
on the current sequence element, but on all preceding characters
within this sequence. For the first character in a sequence, the
context is not defined. As a result, the network predicts all possible
subsequent characters from all contexts (i.e. all sequences, where
the same character occurs), thereby leading to a residual error, here
slighly below 20%.

Figure 4: Dependence of the normalized sequence prediction error on the
number of training episodes. Solid and dashed curves represent mean ±
standard deviation of the prediction error across 15 different network real-
izations. Parameters: number of minicolumns M = 10, number of neurons
per minicolumn NE = 30, number of dendrites per neuron ND = 1, number
of synapses per dendrite KD = 180, number of sequences per batch S = 2,
number of characters per sequence C = 10, length of alphabet A = 10,
inter-stimulus interval ∆T = 80ms, prediction error assessment for every
4th batch (see Appendix B for remaining parameters).

3.3 Role of the stimulus timing
In general, the timing of the feedforward inputs affects the dynamics
of the network in two respects: first, reliable predictions of sequence
elements can only be made if the time interval ∆T between two
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consecutive stimulus presentations is such that the second input
sufficiently coincides with the somatic depolarization caused by the
dendritic spike triggered by the first stimulus (Fig. 3C). Second, only
if the time difference between consecutive stimulus presentations
matches the potentiation window of the spike timing dependent
structural plasticity rule, the network can learn the sequences. Here,
we restrict our investigation to the first factor. The second factor is
removed by adjusting the potentiation window [∆T −∆tP,∆T +∆tP]
of the plasticity rule when varying ∆T .

The model predicts both an upper and a lower bound for the
optimal inter-stimulus interval ∆T (Fig. 5). For our choice of net-
work parameters, the optimal inter-stimulus intervals are in the
range of about 20–150 ms. For inter-stimulus interval outside this
range, the feedforward spike misses the somatic response to the
dendritic spike, ultimately leading to a columnar burst. The optimal
range of inter-stimulus intervals is determined by the neuronal and
synaptic time constants, in particular by the width of the somatic
postsynaptic potential caused by a dendritic spike, but also by the
strength JSD of the somatodendritic coupling.

Figure 5: Dependence of the normalized sequence prediction error on the
interstimulus interval ∆T (after 400 training episodes). Same parameters as
in Fig. 4.

4 DISCUSSION
In the context of our study, the sequence processing speed is deter-
mined by the time interval ∆T between subsequent presentations
of sequence elements that guarantee a successful prediction, i.e. a
coincidence between the feedforward input and the somatic depo-
larization caused by dendritic spikes. Our model demonstrates that
the optimal range of inter-stimulus intervals is solely determined
by low-level neuronal and synaptic parameters, but not by the task
complexity such as the sequence or alphabet length, the number of
learned sequences, or the ambiguity level [5].

Ourmodel suggests a number of biological mechanisms bywhich
the processing speed could be modulated. Candidates are variations
in synaptic or membrane time constants, e.g. controlled by the
level of synaptic background input, or a modulation in the effec-
tive strength of feedforward inputs or somatodendritic coupling,
e.g. through synaptic or intrinsic plasticity.

Note that an HTM implementation based on spiking neurons
with continuous-time dynamics was already presented in [15]. This
implementation mainly served the purpose of porting the HTM
model to an analog-digital neuromorphic hardware system, and

differs from our model in several respects. The study did not address
the role of neuronal parameters for the sequence processing speed.

The network model underlying our study is still very simplistic.
Lateral inhibition within a minicolumn, for example, is mediated by
a single interneuronwith unrealistically strong and fast connections
to and from the pool of excitatory neurons. In future versions, we
will replace this interneuron by a recurrently connected network of
inhibitory neurons [16], thereby permitting more realistic weights
and simultaneously speeding up the interaction between inhibitory
and excitatory cells by virtue of the fast-tracking property of such
networks [17]. Another limiting factor of the current implementa-
tion is the network size: the number of minicolumns, the number
of neurons within minicolumns, the number of dendritic branches
per neuron, as well as the number of synapses per neuron are far
from realistic [5]. The number of sequences that can be successfully
learned in this network is hence small. Note, however, that high
network capacity is not the central aim of this study. The model is
minimalistic on purpose and serves as a means to understand what
network characteristics determine the sequence processing speed.
In future work, however, we aim at upscaling the network, thereby
improving its sequence processing capacity and performance.
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A NETWORK MODEL

Summary
Populations ensemble of minicolumns, each composed of an excitatory and an inhibitory subpopulation
Connectivity

• sparse random connectivity between excitatory neurons subject to spike-timing-
dependent structural plasticity
• local recurrent connectivity between excitatory and inhibitory neurons (static)

Neuron model
• excitatory neurons: multi-compartment model with one soma compartment and one
compartment per dendritic branch, each compartment modeled by leaky integrate-and-
fire (LIF) dynamics
• inhibitory neurons: point neuron (LIF)

Synapse model additive (linear) exponential postsynaptic currents (PSCs)
Plasticity spike-timing-dependent structural plasticity in excitatory-to-excitatory connections
Input external spike sources, connected to excitatory neurons

Populations
Ensemble of minicolumns {i |i = 1, . . . ,M}
Name Elements Size
Ei excitatory neurons in minicolumn i nE
Ii inhibitory neurons in minicolumn i nI

Connectivity
Source Target Pattern
Ei (∀i) Ej (∀j) random, fixed in-degrees KEE and delays dEE, plastic weights JEE, ji (EE connections)
Ei (∀i) Ii (∀i) all-to-all, fixed delays dIE, fixed weights JIE (suprathreshold) (IE connections)
Ii (∀i) Ei (∀i) all-to-all, fixed delays dEI, fixed weights JEI (EI connections)
Ii (∀i) Ii (∀i) none (II connections)
no self-connections (“autapses”), no multiple connections (“multapses”)

Neuron
Excitatory neurons multi-compartment model with one soma compartment and ND dendritic branches

• soma compartment:
– leaky-integrate-and-fire (LIF) dynamics (see below)
• dendritic compartments:
– LIF dynamics (see below)
– KD (excitatory) synapses per dendritic branch

Inhibitory neurons point neuron (LIF)
Dynamics of single
compartments (LIF)

dynamics of membrane potential Vc (t) of compartment c:
• spike emission at time tck if Vc (tck ) ≥ θ

• subthreshold dynamics: τm ÛVc = −Vc + RmIc (t) ∀k, ∀t <
[
tck , t

c
k + τref

)
• reset and refractoriness: Vc (t) = Vr ∀k, ∀t ∈

(
tck , t

c
k + τref

]
Coupling between
compartments of
excitatory neurons

• pulse-coupled interaction (spikes)
• dendrite→ soma coupling: linear exponential post-synaptic current, fixed weight JSD
(PSP amplitude), time constant τSD, delay dSD
• soma→ dendrite coupling (action-potential backpropagation): linear exponential post-
synaptic current, fixed weight JDS (PSP amplitude, suprathreshold), time constant τDS,
delay dDS
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Synapse
Model current based synapses with additive exponential post-synaptic currents (PSCs):

Ii (t) =
∑N
j=1 Îi j (PSC ∗ sj )(t)

with PSC(t) = e−t/τsΘ(t) and Heaviside function Θ(t) =
{
1 t ≥ 0
0 else

↷ post-synaptic potential PSPi j (t) = Îi j
Rmτs
τs − τm

(
e−t/τs − e−t/τm

)
Θ(t)

Plasticity spike-timing dependent structural plasticity for EE connections; each synapse described by
permanence P (maturity) and synaptic weight JEE;

update of Pi j and JEE,i j for each postsynaptic spike at time tpost:
if ∆T − ∆tP < tpost − tpre < ∆T + ∆tP then
P ← P + ∆f P

else
P ← P − ∆dP

end if
if P > Pmax then
P = Pmax

end if
if P > Pθ then

JEE ←W
else

JEE ← 0
end if

here, tpre denotes the spike timing of the presynaptic neuron. ∆T is the interstimulus timing,
∆tP the range from ∆T at which the permanence is incremented and ∆P is the amount used to
increment the permanence.

Input

• Nstim spike-generating sources, each representing a character in the sequences
• each spike source connected to a random subset of L minicolumns via a synaptic weight JEF and a delay of dEF

Training

• repetitive stimulation of network (k times) using the same batch of data.
• a batch of data contains S sequences, each sequence is composed of C characters

Initial conditions

• for every network realization: initial permanences and membrane potentials (at time 0) randomly and indepen-
dently drawn from uniform distributions in intervals [P0,θP) and [Vr ,θ ), respectively

Simulation details

• network simulations performed in NEST version 2.16.0 [13]
• synchronous update using exact integration of the system dynamics on a discrete time grid with step size ∆t [14]

Table 1: Description of the network model
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B PARAMETERS

Name Value Description
Network

nE 30 number of excitatory neurons per minicolumns
nI 1 number of inhibitory neurons per minicolumns
M 10 number of minicolumns

(Potential) Connectivity
KEE 180 number of excitatory inputs per excitatory neuron (EE in-degree)
KEI 1 number of inhibitory inputs per excitatory neuron (EI in-degree)
KIE nE number of excitatory inputs per inhibitory neuron (IE in-degree)
KII 0 number of inhibitory inputs per inhibitory neuron (II in-degree)

Excitatory neurons
Soma

τm 10ms membrane time constant
τref 30ms absolute refractory period
Cm 250 pF membrane capacity
Vr 0.0mV reset potential
θ 15mV spike threshold

Dendrite
ND 1 number of dendritic branches per excitatory neuron
KD 180 (KD = KEE) number of synapses per dendritic branch
τm 3ms membrane time constant
τref 2ms absolute refractory period
Cm 250 pF membrane capacity
Vr 0.0mV reset potential
θ 15mV spike threshold

Somato-dendritic coupling
JSD 9.0 mV dendrite→ soma coupling strength (amplitude of PSP evoked

by dendritic spike)
JDS 8.25mV soma→ dendrite coupling strength (amplitude of dendritic PSP

evoked by somatic spike)
τSD 30ms time constant of dendrite→ soma coupling (post-synaptic cur-

rent)
τDS 2ms time constant of soma→ dendrite coupling (post-synaptic cur-

rent)
dSD 0.1ms delay of dendrite→ soma coupling
dDS 0.1ms delay of soma→ dendrite coupling

Inhibitory neurons
τm 5ms membrane time constant
τref 2ms absolute refractory period
Cm 250 pF membrane capacity
Vr 0.0mV reset potential
θ 15mV spike threshold
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Name Value Description
Synapse

JEE,i j {0,W } E-neuron→ E-neuron connections strength (amplitude of den-
dritic PSP of neuron i evoked by somatic spike of neuron j)

W 7.5mV amplitude of PSP evoked by somatic spike in the case of a mature
synapse, θE = θ

W = 2
JIE 3.75mV E-neuron→ I-neuron connections strength (amplitude of the

inhibitory neuron i evoked by somatic spike of neuron i), θI =
θ
JIE = 4

JEI −22.5mV I-neuron → E-neuron connections strength (amplitude of so-
matic PSP of neuron i evoked by the inhibitory neuron i)

τs,EE 2ms time constant of E-neuron → E-neuron connection (post-
synaptic current)

τs, IE 0.5ms time constant of E-neuron→ I-neuron connection (post-synaptic
current)

τsEI 2ms time constant of I-neuron→ E-neuron connection (post-synaptic
current)

dEE 5ms delay of E-neuron→ E-neuron connection
dIE 0.1ms delay of E-neuron→ I-neuron connection
dEI 0.1ms delay of I-neuron→ E-neuron connection

Plasticity
Pi j [Pmin, Pθ ] synaptic permanence
∆f P 3 permanence increment
∆dP 1 permanence decrement
W 9.0mV weight (JEE) of mature synapses
Pθ 2300 synapse maturity threshold
Pmax 4000 upper permanence bound
Pmin 2000 lower permanence bound
∆tP 5 interval for synaptic increment

Input
Nstim 10 number of external spike sources
L 1 number of minicolumns connected to the same spike source
S 2 number of sequences per batch
C 10 number of characters per sequence
A 10 length of the total alphabet
JEF 16.5mV Feedforward input→ E-neuron connections strength (amplitude

of somatic PSP of neuron i evoked by feedforward spike)
τs,EF 3.16ms time constant of Feedforward input → E-neuron connection

(post-synaptic current)
dEF 0.1ms delay of Feedforward input→ E-neuron connection

Simulation
∆T [3, 180] ms interstimulus timing
∆t 0.1ms time resolution
k 400 training steps

Table 2: Network and simulation parameters
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