001     864231
005     20240711113849.0
024 7 _ |a 10.1088/1741-4326/ab280f
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a altmetric:63877735
|2 altmetric
024 7 _ |a WOS:000476824400001
|2 WOS
024 7 _ |a 2128/23407
|2 Handle
037 _ _ |a FZJ-2019-04065
082 _ _ |a 620
100 1 _ |a Sunn Pedersen, T.
|0 0000-0002-9720-1276
|b 0
|e Corresponding author
245 _ _ |a First divertor physics studies in Wendelstein 7-X
260 _ _ |a Vienna
|c 2019
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1565262317_23602
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Wendelstein 7-X (W7-X) optimized stellarator fusion experiment, which went into operation in 2015, has been operating since 2017 with an un-cooled modular graphite divertor. This allowed first divertor physics studies to be performed at pulse energies up to 80 MJ, as opposed to 4 MJ in the first operation phase, where five inboard limiters were installed instead of a divertor. This, and a number of other upgrades to the device capabilities, allowed extension into regimes of higher plasma density, heating power, and performance overall, e.g. setting a new stellarator world record triple product. The paper focuses on the first physics studies of how the island divertor works. The plasma heat loads arrive to a very high degree on the divertor plates, with only minor heat loads seen on other components, in particular baffle structures built in to aid neutral compression. The strike line shapes and locations change significantly from one magnetic configuration to another, in very much the same way that codes had predicted they would. Strike-line widths are as large as 10 cm, and the wetted areas also large, up to about 1.5 m2, which bodes well for future operation phases. Peak local heat loads onto the divertor were in general benign and project below the 10 MW m−2 limit of the future water-cooled divertor when operated with 10 MW of heating power, with the exception of low-density attached operation in the high-iota configuration. The most notable result was the complete (in all 10 divertor units) heat-flux detachment obtained at high-density operation in hydrogen.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a König, R.
|0 P:(DE-Juel1)159297
|b 1
700 1 _ |a Jakubowski, M.
|0 0000-0002-6557-3497
|b 2
700 1 _ |a Krychowiak, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gradic, D.
|0 0000-0002-6109-9345
|b 4
700 1 _ |a Killer, C.
|0 0000-0001-7747-3066
|b 5
700 1 _ |a Niemann, H.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Szepesi, T.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wenzel, U.
|0 0000-0002-4107-9291
|b 8
700 1 _ |a Ali, A.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Anda, G.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Baldzuhn, J.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Barbui, T.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Biedermann, C.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Blackwell, B. D.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Bosch, H.-S.
|0 0000-0003-0621-6913
|b 15
700 1 _ |a Bozhenkov, S.
|0 0000-0003-4289-3532
|b 16
700 1 _ |a Brakel, R.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 18
700 1 _ |a Cai, J.
|0 P:(DE-Juel1)171371
|b 19
700 1 _ |a Cannas, B.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 21
700 1 _ |a Cosfeld, J.
|0 P:(DE-Juel1)167468
|b 22
700 1 _ |a Dinklage, A.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Dittmar, T.
|0 P:(DE-Juel1)158050
|b 24
700 1 _ |a Drewelow, P.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Drews, P.
|0 P:(DE-Juel1)162257
|b 26
700 1 _ |a Dunai, D.
|0 P:(DE-Juel1)130002
|b 27
700 1 _ |a Effenberg, F.
|0 0000-0002-4846-4598
|b 28
700 1 _ |a Endler, M.
|0 0000-0003-2314-8393
|b 29
700 1 _ |a Feng, Y.
|0 P:(DE-Juel1)6982
|b 30
700 1 _ |a Fellinger, J.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Ford, O.
|0 P:(DE-Juel1)174060
|b 32
700 1 _ |a Frerichs, H.
|0 P:(DE-Juel1)6766
|b 33
700 1 _ |a Fuchert, G.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Gao, Y.
|0 P:(DE-Juel1)161317
|b 35
700 1 _ |a Geiger, J.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Goriaev, A.
|0 P:(DE-Juel1)171567
|b 37
700 1 _ |a Hammond, K.
|0 0000-0002-1104-4434
|b 38
700 1 _ |a Harris, J.
|0 0000-0003-4512-3621
|b 39
700 1 _ |a Hathiramani, D.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Henkel, M.
|0 P:(DE-Juel1)168196
|b 41
700 1 _ |a Kazakov, Ye. O.
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Kirschner, Andreas
|0 P:(DE-Juel1)2620
|b 43
|u fzj
700 1 _ |a Knieps, A.
|0 P:(DE-Juel1)173792
|b 44
700 1 _ |a Kobayashi, M.
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Kocsis, G.
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Kornejew, P.
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Kremeyer, T.
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Lazerzon, S.
|0 0000-0001-8002-0121
|b 49
700 1 _ |a LeViness, A.
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Li, C.
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Li, Y.
|0 P:(DE-Juel1)173935
|b 52
700 1 _ |a Liang, Y.
|0 P:(DE-Juel1)168271
|b 53
700 1 _ |a Liu, Shaocheng
|0 P:(DE-Juel1)166375
|b 54
|u fzj
700 1 _ |a Lore, J.
|0 P:(DE-Juel1)178043
|b 55
700 1 _ |a Masuzaki, S.
|0 P:(DE-HGF)0
|b 56
700 1 _ |a Moncada, V.
|0 P:(DE-HGF)0
|b 57
700 1 _ |a Neubauer, O.
|0 P:(DE-Juel1)130109
|b 58
700 1 _ |a Ngo, T. T.
|0 P:(DE-HGF)0
|b 59
700 1 _ |a Oelmann, J.
|0 P:(DE-Juel1)169485
|b 60
700 1 _ |a Otte, M.
|0 P:(DE-HGF)0
|b 61
700 1 _ |a Perseo, V.
|0 0000-0001-8473-9002
|b 62
700 1 _ |a Pisano, F.
|0 0000-0003-0162-0562
|b 63
700 1 _ |a Puig Sitjes, A.
|0 P:(DE-HGF)0
|b 64
700 1 _ |a Rack, M.
|0 P:(DE-Juel1)145407
|b 65
700 1 _ |a Rasinski, M.
|0 P:(DE-Juel1)162160
|b 66
700 1 _ |a Romazanov, J.
|0 P:(DE-Juel1)165905
|b 67
700 1 _ |a Rudischhauser, L.
|0 P:(DE-HGF)0
|b 68
700 1 _ |a Schlisio, G.
|0 0000-0002-5430-0645
|b 69
700 1 _ |a Schmitt, J. C.
|0 P:(DE-HGF)0
|b 70
700 1 _ |a Schmitz, O.
|0 P:(DE-Juel1)6790
|b 71
700 1 _ |a Schweer, B.
|0 P:(DE-Juel1)130154
|b 72
700 1 _ |a Sereda, S.
|0 P:(DE-Juel1)168195
|b 73
700 1 _ |a Sleczka, M.
|0 P:(DE-HGF)0
|b 74
700 1 _ |a Suzuki, Y.
|0 P:(DE-HGF)0
|b 75
700 1 _ |a Vecsei, M.
|0 P:(DE-HGF)0
|b 76
700 1 _ |a Wang, E.
|0 P:(DE-Juel1)168296
|b 77
700 1 _ |a Wauters, T.
|0 P:(DE-Juel1)145890
|b 78
700 1 _ |a Wiesen, S.
|0 P:(DE-Juel1)5247
|b 79
700 1 _ |a Winters, V.
|0 P:(DE-HGF)0
|b 80
700 1 _ |a Wurden, G. A.
|0 0000-0003-2991-1484
|b 81
700 1 _ |a Zhang, D.
|0 P:(DE-HGF)0
|b 82
700 1 _ |a Zoletnik, S.
|0 P:(DE-HGF)0
|b 83
773 _ _ |a 10.1088/1741-4326/ab280f
|g Vol. 59, no. 9, p. 096014 -
|0 PERI:(DE-600)2037980-8
|n 9
|p 096014 -
|t Nuclear fusion
|v 59
|y 2019
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/864231/files/Sunn_Pedersen_2019_Nucl._Fusion_59_096014.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/864231/files/Sunn_Pedersen_2019_Nucl._Fusion_59_096014.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2019-07-22. Available in OpenAccess from 2020-07-22.
|u https://juser.fz-juelich.de/record/864231/files/Pedersen_paper_IAEA_NF2019v11.pdf
856 4 _ |y Published on 2019-07-22. Available in OpenAccess from 2020-07-22.
|x pdfa
|u https://juser.fz-juelich.de/record/864231/files/Pedersen_paper_IAEA_NF2019v11.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864231
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)171371
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)167468
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 24
|6 P:(DE-Juel1)158050
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)162257
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 35
|6 P:(DE-Juel1)161317
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 37
|6 P:(DE-Juel1)171567
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 41
|6 P:(DE-Juel1)168196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 43
|6 P:(DE-Juel1)2620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 44
|6 P:(DE-Juel1)173792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 52
|6 P:(DE-Juel1)173935
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 53
|6 P:(DE-Juel1)168271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 54
|6 P:(DE-Juel1)166375
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 55
|6 P:(DE-Juel1)178043
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 58
|6 P:(DE-Juel1)130109
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 60
|6 P:(DE-Juel1)169485
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 65
|6 P:(DE-Juel1)145407
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 66
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 67
|6 P:(DE-Juel1)165905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 71
|6 P:(DE-Juel1)6790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 72
|6 P:(DE-Juel1)130154
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 73
|6 P:(DE-Juel1)168195
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 77
|6 P:(DE-Juel1)168296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 78
|6 P:(DE-Juel1)145890
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 79
|6 P:(DE-Juel1)5247
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21