000864236 001__ 864236
000864236 005__ 20240711113851.0
000864236 0247_ $$2doi$$a10.1088/1741-4326/ab1a79
000864236 0247_ $$2ISSN$$a0029-5515
000864236 0247_ $$2ISSN$$a1741-4326
000864236 0247_ $$2altmetric$$aaltmetric:61240335
000864236 0247_ $$2WOS$$aWOS:000469801800004
000864236 037__ $$aFZJ-2019-04070
000864236 082__ $$a620
000864236 1001_ $$0P:(DE-Juel1)130040$$aHuber, Alexander$$b0$$eCorresponding author$$ufzj
000864236 245__ $$aThe software and hardware architecture of the real-time protection of in-vessel components in JET-ILW
000864236 260__ $$aVienna$$bIAEA$$c2019
000864236 3367_ $$2DRIVER$$aarticle
000864236 3367_ $$2DataCite$$aOutput Types/Journal article
000864236 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565266108_22949
000864236 3367_ $$2BibTeX$$aARTICLE
000864236 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864236 3367_ $$00$$2EndNote$$aJournal Article
000864236 520__ $$aFor the first time, the JET operation in deuterium–tritium (D–T) plasma, which is scheduled to take place on JET in 2020, will be performed in the ITER mix of plasma-facing component materials. In view of the preparation of the DT campaign (DTE2), several aspects of the plasma operation require significant improvements, such as a real-time protection of the first wall. The risk of damaging the metallic PFCs caused by beryllium melting or cracking of tungsten owing to thermal fatigue required a new reliable D–T compatible active protection system. Therefore, the future development of the JET real time first wall protection is focused on the D–T campaign and the ITER relevant conditions which may cause failure of camera electronics within the Torus hall. In addition to the technological aspect, the intensive preparation of the diverse software tools and real time algorithms for hot spot detection as well as alarm handling strategy required for the wall protection is in progress.This contribution describes the improved design, implementation, and operation of the near infrared (NIR) imaging diagnostic system of the JET-ILW plasma experiment and its integration into the existing JET protection architecture. To provide the reliable wall protection during the DTE2, two more sensitive logarithmic NIR camera systems equipped with new optical relays to take images and cameras outside of the biological shield have been installed on JET-ILW and calibrated with an in-vessel calibration light source (ICLS). Additionally, post-pulse data visualization and advanced analysis of all types of imaging data is provided by the new software framework JUVIL (JET users video imaging library). The formation of hot spots is recognized as a significant threat due to rapid surface temperature rise. Because it could trigger the protection system to stop a pulse, it is important to identify the mechanisms and conditions responsible for the formation of such hot spots. To address this issue the new software tool 'Hotspot Editor' has been developed.
000864236 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000864236 588__ $$aDataset connected to CrossRef
000864236 7001_ $$0P:(DE-HGF)0$$aKinna, D.$$b1
000864236 7001_ $$0P:(DE-HGF)0$$aMatthews, G. F.$$b2
000864236 7001_ $$0P:(DE-Juel1)130158$$aSergienko, G.$$b3$$ufzj
000864236 7001_ $$0P:(DE-HGF)0$$aBalboa, I.$$b4
000864236 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b5
000864236 7001_ $$0P:(DE-HGF)0$$aLomas, P. J.$$b6
000864236 7001_ $$0P:(DE-HGF)0$$aMailloux, J.$$b7
000864236 7001_ $$0P:(DE-HGF)0$$aMcCullen, P.$$b8
000864236 7001_ $$0P:(DE-Juel1)4596$$aMertens, Ph.$$b9
000864236 7001_ $$0P:(DE-HGF)0$$aRimini, F. G.$$b10
000864236 7001_ $$0P:(DE-HGF)0$$aSilburn, S.$$b11
000864236 7001_ $$0P:(DE-HGF)0$$aValcarcel, D.$$b12
000864236 7001_ $$0P:(DE-HGF)0$$aZastrow, K.-D.$$b13
000864236 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/ab1a79$$gVol. 59, no. 7, p. 076016 -$$n7$$p076016 -$$tNuclear fusion$$v59$$x1741-4326$$y2019
000864236 8564_ $$uhttps://juser.fz-juelich.de/record/864236/files/Huber_2019_Nucl._Fusion_59_076016.pdf$$yRestricted
000864236 8564_ $$uhttps://juser.fz-juelich.de/record/864236/files/Huber_2019_Nucl._Fusion_59_076016.pdf?subformat=pdfa$$xpdfa$$yRestricted
000864236 909CO $$ooai:juser.fz-juelich.de:864236$$pVDB
000864236 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b0$$kFZJ
000864236 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130158$$aForschungszentrum Jülich$$b3$$kFZJ
000864236 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b5$$kFZJ
000864236 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4596$$aForschungszentrum Jülich$$b9$$kFZJ
000864236 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000864236 9141_ $$y2019
000864236 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864236 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000864236 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2017
000864236 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864236 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864236 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864236 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864236 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864236 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864236 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864236 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864236 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864236 920__ $$lyes
000864236 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000864236 980__ $$ajournal
000864236 980__ $$aVDB
000864236 980__ $$aI:(DE-Juel1)IEK-4-20101013
000864236 980__ $$aUNRESTRICTED
000864236 981__ $$aI:(DE-Juel1)IFN-1-20101013