001     864236
005     20240711113851.0
024 7 _ |a 10.1088/1741-4326/ab1a79
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a altmetric:61240335
|2 altmetric
024 7 _ |a WOS:000469801800004
|2 WOS
037 _ _ |a FZJ-2019-04070
082 _ _ |a 620
100 1 _ |a Huber, Alexander
|0 P:(DE-Juel1)130040
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The software and hardware architecture of the real-time protection of in-vessel components in JET-ILW
260 _ _ |a Vienna
|c 2019
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1565266108_22949
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For the first time, the JET operation in deuterium–tritium (D–T) plasma, which is scheduled to take place on JET in 2020, will be performed in the ITER mix of plasma-facing component materials. In view of the preparation of the DT campaign (DTE2), several aspects of the plasma operation require significant improvements, such as a real-time protection of the first wall. The risk of damaging the metallic PFCs caused by beryllium melting or cracking of tungsten owing to thermal fatigue required a new reliable D–T compatible active protection system. Therefore, the future development of the JET real time first wall protection is focused on the D–T campaign and the ITER relevant conditions which may cause failure of camera electronics within the Torus hall. In addition to the technological aspect, the intensive preparation of the diverse software tools and real time algorithms for hot spot detection as well as alarm handling strategy required for the wall protection is in progress.This contribution describes the improved design, implementation, and operation of the near infrared (NIR) imaging diagnostic system of the JET-ILW plasma experiment and its integration into the existing JET protection architecture. To provide the reliable wall protection during the DTE2, two more sensitive logarithmic NIR camera systems equipped with new optical relays to take images and cameras outside of the biological shield have been installed on JET-ILW and calibrated with an in-vessel calibration light source (ICLS). Additionally, post-pulse data visualization and advanced analysis of all types of imaging data is provided by the new software framework JUVIL (JET users video imaging library). The formation of hot spots is recognized as a significant threat due to rapid surface temperature rise. Because it could trigger the protection system to stop a pulse, it is important to identify the mechanisms and conditions responsible for the formation of such hot spots. To address this issue the new software tool 'Hotspot Editor' has been developed.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kinna, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Matthews, G. F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sergienko, G.
|0 P:(DE-Juel1)130158
|b 3
|u fzj
700 1 _ |a Balboa, I.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 5
700 1 _ |a Lomas, P. J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Mailloux, J.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a McCullen, P.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Mertens, Ph.
|0 P:(DE-Juel1)4596
|b 9
700 1 _ |a Rimini, F. G.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Silburn, S.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Valcarcel, D.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Zastrow, K.-D.
|0 P:(DE-HGF)0
|b 13
773 _ _ |a 10.1088/1741-4326/ab1a79
|g Vol. 59, no. 7, p. 076016 -
|0 PERI:(DE-600)2037980-8
|n 7
|p 076016 -
|t Nuclear fusion
|v 59
|y 2019
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/864236/files/Huber_2019_Nucl._Fusion_59_076016.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/864236/files/Huber_2019_Nucl._Fusion_59_076016.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:864236
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130040
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)4596
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21