


studies have tried pooling data on stimulation location and

clinical outcome over multiple subjects using probabilistic

stimulation mapping. Probabilistic stimulation maps (PSMs)

were created based on contact locations18,19 or VTAs20–26 for

different DBS targets and indications. For PD and STN

DBS, Butson et al created PSMs from a sample of n = 6

patients for bradykinesia and rigidity, which showed the

highest improvement dorsal to the STN.20 Yet, no further

statistical verification was performed. Addressing this, Eisen-

stein et al introduced voxel-based statistics to verify their

coordinate-based PSMs for STN DBS and found general

improvement of motor symptoms in the STN and its sur-

roundings.18,19 Akram et al used a different statistical

approach and found that the best locations for the improve-

ment of akinesia, tremor, and rigidity were in different parts

of the dorsal STN.25 PSMs have been proposed to guide

clinical programming in DBS23 and could be used to estab-

lish imaging-based, semiautomated DBS programming algo-

rithms.27 However, to guide programming, the optimal

stimulation "sweet spot" that most reliably predicts favorable

clinical outcome needs to be known. We here aimed to

identify such sweet spots for different PD motor symptoms.

Based on previous work,21 a novel pipeline for creating and

validating PSMs was applied to a large dataset of prospective

monopolar reviews of PD patients. We then used 2 indepen-

dent test cohorts to investigate whether stimulation overlap

with the identified sweet spot was able to predict acute and

chronic motor improvement.

Patients and Methods

Ethics
This investigator-initiated study was approved by the

ethics committee of the University of Cologne (Study Nos

14-337, 15-357) and conducted in accordance with the

Declaration of Helsinki. Patients gave written informed

consent before study participation.

Data Acquisition
PSM Creation Dataset. Twenty-one PD patients who had

received DBS in the STN at the University Hospital

Cologne were recruited for this study. Inclusion criteria

were the clinical diagnosis of PD without severe cognitive

impairment or significant neuropsychiatric problems, a

significant L-dopa and stimulation response, a minimum

of 3 months elapsed since DBS surgery, and the ability to

undergo an extended monopolar review of approximately

3 hours after overnight withdrawal of dopaminergic medi-

cation. During recruitment, normal impedance levels were

ensured and the DBS device was turned off to identify the

upper extremity more severely affected by motor symp-

toms. The lead contralateral to the predominantly affected

body side was examined while the other lead was left on

its clinical DBS setting to reduce patient discomfort and

increase compliance during the assessment. Five patients

agreed to repeat the monopolar review on the less affected

hemisphere the following day, while maintaining with-

drawal of dopaminergic medication.

During the monopolar reviews, contacts were inter-

rogated by increasing stimulation amplitudes in 1mA steps

to a maximum of 5mA or until persistent (>1 minute) or

intolerable side effects occurred. Pulse width was set to

60 microseconds and frequency to 130Hz in all patients.

Contacts were interrogated in randomized order with the

patient being unaware of which contact was active. If no

side effects occurred in a stimulation setting, instructions

for movement tasks were given via standardized videos.

Symptom severity of rigidity, akinesia, resting tremor, and

postural tremor of the contralateral arm was assessed by

the same rater (J.R.). Rigidity was assessed according to

item 22 of the Unified Parkinson’s Disease Rating Scale

(UPDRS) Part III. For tremor, the mean of 2 UPDRS

items was assessed (item 20, rest tremor; item 21, postural

tremor). Severity of akinesia was assessed using the mean

of items 23 (finger tapping) and 25 (hand rotation). Addi-

tional half-point steps were allowed to increase the resolu-

tion of the rating.28 Additionally, tremor and akinesia

were quantified by calculating the total travel distance dur-

ing the abovementioned tasks using a motion tracking sys-

tem (CMS 20; Zebris Medical, Isny, Germany).28 These

quantitative results were analyzed separately from the clini-

cal ratings. Baseline symptom severity (DBS off) was

reassessed before beginning stimulation on each contact.

For each stimulation setting, the motor improvement was

calculated by subtracting the average baseline score. Occur-

rence of side effects was rated from 0 to 3, reflecting no,

slight, moderate, or severe appearance during stimulation. If

a limiting side effect occurred at stimulation amplitudes

<5mA and testing had to be aborted, we assumed that the

same side effect would also have occurred during stimula-

tion with the higher amplitudes not tested. If a patient did

not show a specific motor symptom at baseline, they were

excluded from the analysis of this symptom. In addition to

the separate symptoms, we also calculated the overall motor

improvement by averaging clinical improvements of rigidity,

akinesia, and tremor. We further calculated a score for the

occurrence of any side effect by pooling the data from all

separate side effects.

Test Dataset 1. The first test dataset consisted of 10 PD

patients who had received bilateral STN DBS at the Uni-

versity Hospital Cologne with directional DBS leads

(Cartesia; Boston Scientific, Marlborough, MA). Patient

characteristics of this dataset have been published previ-

ously.28 In brief, patients underwent a monopolar review
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on both hemispheres, with the 3 directional contacts on

the clinically best directional level in each hemisphere

being investigated with increasing amplitudes up to 5mA.

Motor tasks and assessment were conducted similarly to

the ones explained above, but clinical ratings were double-

blind, as neither patient nor rater knew which contact was

activated. In total, the dataset consisted of 163 individual

stimulation settings. Overall motor improvement was

again assessed by averaging the improvements of rigidity,

akinesia, and tremor.

Test Dataset 2. The second test dataset consisted of

63 PD patients who had received bilateral STN DBS at

Charité–University Medicine Berlin (n = 51) or the Uni-

versity Hospital Cologne (n = 12). The Berlin dataset has

been published previously and consisted of different sub-

cohorts whose data were collected in the course of differ-

ent prospective DBS trials or from patient files.29,30 The

Cologne dataset was collected as part of a prospective

DBS registry. For each patient, UPDRS-III motor scores

were obtained in the medication OFF condition both pre-

operatively and at least 6 months postoperatively with

clinical DBS settings.

Data Analyis

Lead Localization and Standardization
Image processing and lead localization were performed

using the Lead-DBS toolbox (https://www.lead-dbs.org/).30

Preoperative magnetic resonance imaging (MRI) and post-

operative computed tomographic images were coregistered

linearly using Advanced Normalization Tools (ANTs).31

Images were then normalized into the Montreal Neurologi-

cal Institute (MNI) space (2009b, nonlinear, asymmetric)

using the symmetric diffeomorphic registration approach

(SyN) implemented in ANTs and the “subcortical refine”

setting as implemented in Lead-DBS.31–33 Lead trajectories

were identified using the PaCER algorithm.34 For direc-

tional leads, the rotation was confirmed using the DiODe

algorithm.35 For the Berlin cohort, image coregistration and

lead localization were performed using SPM12 and the

TRAC/CORE algorithms, because a majority of patients

had postoperative MRI scans.30 All steps were visually

inspected to ensure data quality.

Volume of Tissue Activated. VTAs were calculated using a

finite element method approach as implemented in Lead-

DBS.29 Anisotropic conductivity values for gray

(σ = 0.33S/m) and white matter (σ = 0.14S/m) were cho-

sen. The electric field threshold was set to e = 0.2V/mm,

which approximates the VTA radius estimate by Mädler

and Coenen.9,11,29

Probabilistic Stimulation Maps. PSMs were created for

each symptom (rigidity, akinesia, and tremor) and each

encountered side effect separately as well as for the com-

bined overall motor improvement and the occurrence of

any side effect. For each examined stimulation setting, the

respective VTA was created. Left hemispheric VTAs were

nonlinearly flipped to the right hemisphere using Lead-

DBS. Then all VTAs were transferred to the same

40 × 40 × 40mm template space covering the wider STN

area. The spatial resolution was set to 0.5mm, the same as

the MNI template. Each voxel of the VTA was then

assigned the clinical outcome during stimulation. Then, all

VTAs were pooled across subjects, and the numbers of con-

tributing VTAs, as well as their mean clinical outcome,

were obtained for each voxel, resulting in the N-image and

the Mean-image.

Voxel-Based Statistical Analysis. For further statistical

analysis, voxels with less than n = 16 inputs were dis-

carded.21 This threshold was chosen as it allows for statis-

tical approximation of the Wilcoxon signed rank test (see

below) and it results in each voxel having to receive input

from at least 4 different contacts. To statistically investi-

gate the outcomes in each voxel, they had to be com-

pared against a meaningful null hypothesis H0. Previous

studies used zero change (H0 = 0) as their null hypothe-

sis.18,19,21 In STN DBS, however, some improvement in

motor symptoms is seen on most contacts and a worsen-

ing of symptoms occurs only very rarely. Testing against

H0 = 0 thus results in almost all voxels showing statisti-

cally significant improvement.19,21 We therefore chose

a more conservative approach, which was that the null

hypothesis should reflect the average stimulation out-

come one would expect if the outcome was solely depen-

dent on the stimulation amplitude and independent

of stimulation location. This was represented in the

H0-image by calculating the average improvement at all

5 stimulation amplitudes and assigning each VTA not its

original outcome value, but the average outcome of its

stimulation amplitude. For example, all 1mA VTAs were

assigned the average symptom improvement at 1mA.

Therefore, the resulting H0-image accounts for the fact

that voxels that are being stimulated by higher amplitude

VTAs can be expected to be associated with greater

symptom improvement. We then could statistically test

each voxel’s original outcomes in the Mean-image against

the expected outcomes in the H0-image using a Wilcoxon

signed rank test. After subtracting the H0-image from the

Mean-image, we identified all voxels that showed signifi-

cant (p < 0.05) positive outcomes (higher symptom sup-

pression or more side effects) and discarded all remaining

voxels from further analysis.

October 2019 529

Dembek et al: DBS Sweet Spots in PD



Nonparametric Permutation Analysis. As in all voxel-based

statistics, there is an increased risk of type 1 errors due to

multiple comparisons. Additionally, our monopolar

dataset consists of a variety of observations from the same

leads and contacts, which are not independent from one

another. To address these problems, we performed a non-

parametric cluster-based permutation analysis comparing

the results of our voxel-based analysis (ie, Mean-image vs

H0-image) to surrogate datasets. Following an approach

proposed by Eisenstein et al,18 we first created 1,000 Per-

muted-mean-images.21 To do so, we shuffled the leads and

the order of contacts within each lead, thus maintaining

the grouping of contacts within each lead during the per-

mutations (Fig 1B). Analogous to the analysis steps of the

original dataset, Permuted-mean-images were generated

pooling all of the newly assigned VTAs and then tested

against the H0-image. Next, clusters of significant voxels

were identified in the original and the permuted datasets.

A significant voxel belonged to a cluster if all its direct

neighbors were also significant. For each cluster, we cal-

culated a summary statistic to assess its overall validity.

The cluster’s summary statistic was the sum of the nega-

tive decadic logarithm of the p values of its voxels.18,19,21

Because large clusters with highly significant voxels are

unlikely to exist by chance alone, noncoincidental clusters

from the original dataset should yield greater summary

statistics than clusters from the permuted datasets. Hence,

we ranked the summary statistics of our original clusters

within the permutation distribution of the summary sta-

tistics of the permuted clusters. All clusters with summary

statistics <95% of the permuted summary statistics were

discarded. In other words, only clusters with a p value

<0.05 within the permutation distribution were accepted

as valid sweet spots for either symptom suppression

or side effects. Figure 1 provides an overview of the

methodology.

Test Dataset Validation. To validate our sweet spot for

overall motor improvement, we aimed at predicting DBS

motor response in the 2 independent test cohorts based

on stimulation overlap to the sweet spot. Using the first

test cohort, we investigated whether our sweet spot could

predict acute motor outcome observed during monopolar

reviews. For each stimulation setting, we therefore calcu-

lated the percentage of the sweet spot that was covered by

the corresponding VTA. We then used linear mixed-effect

models to determine to what extent this overlap could pre-

dict symptom improvement, while accounting for non-

independence of stimulation effects within individual

leads. Overlap was therefore introduced as a fixed effect

and the association to a particular lead as a random effect.

To compare the predictive quality of the sweet spots to

other neuroanatomical structures, we also repeated the lin-

ear mixed-effect model analysis using the VTAs’ overlap

FIGURE 1: (A) Schematic overview of the statistical analysis. Each volume of tissue activated (VTA) was either assigned its
outcome (left), the average outcome at its stimulation amplitude (center), or a permuted outcome from another lead at the same
amplitude (right). Pooling all VTAs then resulted in the Mean-image, the H0-image, or a Permuted-mean-image, respectively.
Outcomes at each voxel of the Mean-images were statistically compared to the H0-image. Finally, summary statistics of clusters
of significant voxels in the Mean-image were compared to those of the Permuted-mean-images to determine the overall
significant clusters. (B) Schematic overview of the permutation scheme. VTAs from the same contact stayed together, but
contacts were randomly reordered within the lead and reassigned to the position of a different lead.
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with the STN and the sensorimotor STN36 as predictors

of clinical outcomes. Models are described using the

amount of variance R2 explained by the fixed effect, the

p value of the fixed effect, and the Akaike information cri-

terion (AIC; smaller values indicating better model fit; dif-

ferences >2 indicating model superiority of the model

with the lower AIC).37 Using the second test dataset, we

also aimed at investigating whether our sweet spot could

predict the overall UPDRS-III motor outcome of chronic

DBS settings. Again, the VTA overlap with the sweet

spot, as well as the STN and the sensorimotor STN, was

calculated. Because patients were stimulated bilaterally,

the sum of the overlaps of both hemispheres was calculated.

We then used a linear regression model to investigate

whether this bilateral overlap could predict improvement

on the UPDRS-III.

Post Hoc Analysis. In an additional analysis, we also com-

pared our sweet spot for overall motor improvement to pre-

viously published results. To make our sweet spot volume

comparable to previously published coordinates,5,6,8,25 we

calculated its center of mass.

Technical Realization. All calculations were performed in

MATLAB R2018a (MathWorks, Natick, MA).

Results

PSM Creation Cohort
A total of 449 stimulation settings on 26 leads and 99 con-

tacts were used to create PSMs. The assessment of 3 leads

had to be aborted due to patient fatigue, but fully investi-

gated contacts were still included in the dataset. Figure 2

displays lead locations and the N-image. The N-image and

thus the volume analyzed in this study covered most of

the STN and its surroundings.

Motor Symptoms
PSMs were created for overall motor improvement, the

clinical and the quantitative assessments of akinesia and

tremor, and for rigidity. For overall motor improvement

(p = 0.009), as well as for rigidity (p = 0.001) and akinesia

(clinical: p = 0.017; quantitative: p = 0.009), one cluster

with above average symptom suppression remained signifi-

cant after nonparametric permutation analysis. Several

smaller clusters were rejected (Table 1). Tremor clusters

did not reach significance (clinical: p = 0.66; quantitative:

p = 0.72). The sweet spot for overall motor improvement

was centered on the dorsolateral STN and covered the

dorsal parts of both the atlas-defined sensorimotor STN

and the associative STN as well as the surrounding white

matter. The significant clusters for clinical improvements

of rigidity and akinesia showed a similar distribution. The

cluster for quantitative improvement of akinesia was smaller

than the one for clinical improvement, but 89% of its vol-

ume overlapped with the clinical cluster. Figure 3 provides

a direct comparison of the Mean-images and the significant

clusters for all motor symptoms. Overlaps with the STN

are presented in Table 1 for all significant clusters.

Side Effects
Side effects occurred in 60 of 449 examined settings. A

variety of side effects were encountered, with dysarthria

being the most common (n = 26), followed by muscle

contractions (n = 23), disturbed vision (n = 17), dizziness

(n = 16), paresthesia (n = 13), and mood changes

(n = 10). None of the clusters for individual side effects

reached statistical significance (see Table 1). For the occur-

rence of any side effect, a significant cluster was found that

covered parts of the posteroventral STN and much of its

posteroventral surroundings (see Fig 3).

Predicting Acute Motor Outcome
The first independent test cohort, consisting of 10 patients

with a total of 163 directional DBS settings, was used to

investigate the predictive value of the sweet spot for overall

motor improvement to predict acute motor outcome and

whether sweet spot–based predictions were more accurate

compared to those based on the STN and sensorimotor

FIGURE 2: (A) Lead locations of the probabilistic stimulation
map creation dataset (n = 26) seen from anterior together
with tripartite subthalamic nuclei (dark red = sensorimotor,
blue = associative, yellow = limbic).36 (B) Anterior and
(C) lateral views depicting how often voxels were stimulated.
Colored volumes reflect stimulation by n ≥ 1 (gray), n ≥ 16
(green, threshold for voxel-based statistics), n ≥ 100 (yellow),
and n ≥ 200 VTAs (red). A = anterior; L = left; P = posterior;
R = right.
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STN (Fig 4). We therefore calculated 3 linear mixed-effect

models introducing VTA overlap with the overall sweet

spot, the whole STN, and the sensorimotor STN as fixed

effect, while accounting for individual leads as a random

effect. Although overlap as the fixed effect was significant

in all models, both the amount of variance explained by

the fixed effect (R2) and the AIC revealed that the model

using overlap with the sweet spot (R2 = 37%, p < 10−9,

AIC = −79.8) clearly outperformed overlap with the STN

(R2 = 9%, p < 10−6, AIC = −54.0) and its sensorimotor

subpart (R2 = 10%, p < 10−7, AIC = −45.8). Notably,

significant leadwise random effects only occurred in 4 of

20 leads and in all individual leads the relation between

sweet spot overlap and outcome was positive.

Predicting Chronic Motor Outcome
For the second independent test cohort, consisting of

63 patients, overlaps were used to predict total UPDRS-

III improvement (Fig 5). Again, overlap was a significant

predictor in all models and stimulation overlap with

the sweet spot explained R2 = 20% (p < 10−3, AIC = 0.9)

of the variance in UPDRS-III improvement, whereas over-

lap with the sensorimotor STN explained R2 = 19%

(p < 10−3, AIC = 1.5) and overlap with the whole STN

explained R2 = 21% (AIC = 0.1, p < 10−3). Both R2 and

AIC revealed no relevant differences between models.

Comparison to Other Sweet Spots
The center of mass of the sweet spot was x = 12.50mm,

y = −12.72mm, z = −5.38mm for the right hemisphere

(MNI coordinates). The distance to the sweet spot coordi-

nate from Horn et al5 and Caire et al8 was only 0.56mm,

and both sweet spots were positioned at the dorsal inter-

face between sensorimotor and associative STN. The

sweet spot published by Bot et al6 was slightly anterior

and had a distance of 1.34mm to our sweet spot. On the

other hand, the sweet spot by Akram et al25 was posi-

tioned 2.41mm more ventral and medial to our sweet

spot, again at the interface between sensorimotor and asso-

ciative STN. A comparison of the sweet spots is shown in

Figure 6; coordinates can be found in Table 2.

TABLE 1. Number of Clusters Discarded after Nonparametric Permutation Statistics as Well as Statistics of

Significant Clusters

Symptoms

Discarded

Clusters

Significant

Clusters Rank p Size

Inside

STN

Inside

Sensorimotor STN

Overall motor

improvement

4 1 991 0.009a 359mm3 20% 11%

Rigidity 1 1 999 0.001a 420mm3 24% 12%

Akinesia, clinical

rating

1 1 983 0.017a 282mm3 15% 11%

Akinesia, quantitative 13 1 991 0.009a 111mm3 9% 10%

Tremor, clinical rating 10 0 340 0.66

Tremor, quantitative 3 0 278 0.722

Side effects

Any side effect 3 1 999 0.001a 194mm3 11% 7%

Dysarthria 2 0 373 0.627

Muscle

contractions

6 0 516 0.484

Paresthesia 5 0 820 0.18

Mood changes 4 0 686 0.314

Visual disturbance 10 0 311 0.689

Dizziness 15 0 202 0.798

aStatistically significant.

STN = subthalamic nucleus.
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FIGURE 3: Probabilistic stimulation maps and significant clusters for different motor symptoms and the occurrence of
side effects. The first 2 columns show significant clusters with good improvement (green) or high side effect occurrence
(red, last row) from anterior (1st column) and lateral (2nd column) together with a tripartite subthalamic nucleus
(sensorimotor = dark red, associative = blue, limbic = yellow). The remaining columns depict coronal slices through the
Mean-image at y = −17/−14/−11mm. To compare clinical and quantitative symptom assessments, improvement was
z-scored and is color-coded according to the colorbar. Outlines of the significant clusters are again shown in green/red. All
atlas structures are based on the DISTAL atlas.36 A = anterior; GPi = globus pallidus internus; L = left; P = posterior;
R = right; RN = red nucleus.
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FIGURE 4: (A) Lead locations of test dataset 1 (n = 20), together with tripartite subthalamic nuclei (STN; dark red = sensorimotor,
blue = associative, yellow = limbic). (B, C) Lateral views of an example patient (Patient 7) with directional volumes of tissue
activated (VTAs; red) at 3mA amplitudes on contacts 13 and 15 shown together with the sweet spot for overall motor
improvement (green). Stimulation at contact 15 showed much larger overlap with the sweet spot and better acute motor
improvement. (D–F) Linear mixed-effect model (black) and 95% confidence interval (gray) between acute motor improvement
and the percentage of the sweet spot (D), the STN (E), and the sensorimotor STN (F) covered by the respective VTA. Random
effects for each individual hemisphere are also shown (dashed, gray). Stimulation overlap with the sweet spot explained more
than triple the variance compared to overlap with the STN or the sensorimotor STN. Plus signs mark the stimulation settings
from B and C. A = anterior; L = left; P = posterior; R = right.

FIGURE 5: (A) Lead locations of test dataset 2 (n = 126), together with tripartite subthalamic nuclei (STNs; dark
red = sensorimotor, blue = associative, yellow = limbic). (B, C) Anterior views of volumes of tissue activated (VTAs; red) with
amplitudes of Patient 8 (B) and Patient 29 (C) shown together with the sweet spot for overall motor improvement (green). (D–F)
Linear regression (black) and 95% confidence interval (gray) between chronic motor improvement and the percentage of the
sweet spot (D), the STN (E), and the sensorimotor STN (F) covered by the respective VTAs. Overlaps with the sweet spot, STN,
and sensorimotor STN explained a comparable amount of variance in chronic motor improvement. Plus signs mark the
stimulation settings from B and C. L = left; R = right.
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Discussion

In this study, we determined and validated distinct spatial

clusters for the suppression of akinesia, rigidity, and over-

all motor improvement from clinical data generated dur-

ing prospective monopolar reviews. Stimulation overlap

with the sweet spot for overall motor improvement was

able to predict acute and chronic motor outcome in

2 independent cohorts.

Motor Symptoms
Significant clusters for the suppression of rigidity, akinesia,

and overall motor improvement showed substantial over-

lap and covered parts of the (dorsolateral) STN. However,

the majority of their volume lay outside the STN’s border,

which is in line with previous studies8,20 but contradictory

to others.25 Although the PSMs for clinical and quantita-

tive improvement of tremor showed a gradient toward

better improvement dorsomedial of the STN, no cluster

reached statistical significance (see Fig 3). The reason for

this is most likely that many patients in our cohort did

not experience tremor at baseline, and thus too few data

existed to result in robust clusters. In addition to the

clinical ratings, we performed a quantitative motion analy-

sis for akinesia and tremor. The akinesia sweet spot found

via quantitative analysis showed remarkable consistency

with the one generated from clinical ratings. The quantita-

tive analysis of tremor did not reveal a significant sweet

spot, which was again consistent with the results from

clinical ratings. This convergence not only substantiates

the validity of the clusters found but also underlines the

scale-independence of the approach. Our results suggest

that both rigidity and akinesia share a common sweet

spot, whereas it remains unclear whether this is also true

for tremor. Importantly, we were able to use our sweet

spot to predict clinical outcome in 2 independent cohorts.

We successfully predicted acute motor improvement in an

independent cohort that had been implanted with differ-

ent, directional DBS leads and had received prospective

monopolar reviews using a similar study design. These

predictions were much more accurate than predictions

based on the STN or the sensorimotor STN and

explained more than triple the amount of variance in clini-

cal outcome. When predicting differences in chronic and

interindividual UPDRS-III improvement, however, over-

lap with the STN, the sensorimotor STN, or our sweet

spot were equally effective and the overall amount of

explained variance was lower. These results highlight

3 important points. First, there are differences between

acute and chronic outcomes and attempts to predict one

via the other may be more challenging than to predict one

via the same. Second, chronic, and more importantly

interindividual, outcome is a more complex endpoint with

many contributing factors such as age, disease duration,

and axial symptoms that possibly need to be taken into

account when trying to explain interindividual variance.29

Third, center-specific differences in surgical targeting

might reduce the predictive capabilities of the Cologne-

based sweet spot for the largely Berlin-based second test

dataset. Large, multicenter datasets should be aggregated

when determining sweet spots in the future. Different

approaches to predicting DBS outcome in PD have been

put forward in the past. A previous approach to predict

stimulation outcome based solely on contact locations was

unsuccessful.38 Bot et al, on the other hand, found a nega-

tive correlation between UPDRS-III improvement and

distance to a sweet spot they calculated from contact

locations.6 Horn et al were able to predict long-term

UPDRS-III improvement based on structural and func-

tional connectivity profiles.29 Akram et al found that

structural connectivity to the supplementary motor area

predicted acute improvement in rigidity and akinesia, and

connectivity to the primary motor cortex predicted tremor

suppression.25 Due to differences in data and statistics, it is,

however, difficult to directly compare their results to ours.25

FIGURE 6: (A, B) Comparison of different sweet spots. The
center of mass of the sweet spot for overall motor
improvement from this study (green) is shown together with
previously published sweet spots from Caire et al5,8 (red),
Bot et al6 (blue), and Akram et al25 (yellow). Whereas the
center of our sweet spot as well as the sweet spots by Caire
et al and Bot et al were positioned at the dorsal interface
between sensorimotor STN (dark red) and associative STN
(light blue), the sweet spot published by Akram et al. was
slightly more ventral and medial. (C, D) Coronal and sagittal
positions of the center of mass of our sweet spot in the
Montreal Neurological Institute T2 template. A = anterior;
L = left; P = posterior; R = right.
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Side Effects
Our analysis revealed that side effects in general were

more likely to occur when stimulation was more posterior

and more ventral. When mapping individual side effects,

clusters did not reach statistical significance, most likely

due to the small number of VTAs that were associated

with side effects.

Methodological Considerations and Limitations
Different aspects should be considered regarding this

study. First, we provide a statistical method to create

voxel-based probabilistic stimulation maps for large DBS

datasets that is especially suited but not limited to

monopolar review data. The main novelty of our statistical

approach is its more conservative null hypothesis formu-

lated in the H0-image. Compared to previous studies, this

method ensures that only those voxels were identified that

show statistically significant deviations from what one

would expect to be a voxel’s average stimulation out-

come.18,19,21 Another very important issue is that data

from the same monopolar review have to be considered as

dependent from one another. We addressed this problem

by maintaining these dependencies in our nonparametric

permutation analysis. Applying our nonparametric permu-

tation analysis on spatial clusters of significant voxels

instead of individual significant voxels furthermore reduces

the risk of single false-positive voxels. Notably, we did not

perform an additional correction for multiple comparisons

regarding the number of investigated clinical and quantita-

tive scores. On the other hand, most results would have

withstood even rigorous Bonferroni correction (see

Table 1) and the consistency of simultaneous clinical and

quantitative scores further supports the validity of our

results. VTA models more complex than the one used in

our study have been proposed in the past. Different axon

properties or axon orientations have been shown to influ-

ence activation in modeling studies.11,39–41 However,

most of the underlying properties are unknown, which is

why we chose a model based on clinically observed thresh-

olds and previously published results.9,11,29 Although our

dataset consisted of prospective, standardized monopolar

reviews with >400 stimulation settings and both clinical

and quantitative assessments, it was still limited to data

from 21 patients. However, we validate findings on

73 additional out-of-sample patients with both short- and

long-term effects. Larger datasets, preferably from multi-

center cohorts, could help to improve sweet spot genera-

tion and possibly increase predictive capabilities.

Neuroanatomical Implications
In recent years, the scientific focus regarding target struc-

tures of DBS has shifted from nuclei to fiber tracts.29,42

Our results are in line with this development in so far, as

our sweet spot predominantly covered white matter areas

surrounding the STN. Different tracts have been proposed

to be involved in the improvement of parkinsonian symp-

toms, such as the hyperdirect pathway,20,43 the lenticular

fasciculus,20,44 and direct connections between STN and

the globus pallidus.45 Tremor improvement has been linked

to stimulating cerebellothalamocortical connections.43,46 In

addition, Horn et al and Akram et al showed that structural

connectivity to the supplementary motor area might play

an essential role in alleviating PD symptoms.25,29

TABLE 2. Montreal Neurological Institute Coordinates of the Center of Mass of Our Sweet Spot for Overall

Motor Improvement and Comparison to Other, Previously Published Sweet Spots

x y z Distance to Sweet Spot

Right hemisphere

Sweet spot, center of mass 12.50mm −12.72mm −5.38mm

Horn et al,5 Caire et al8 12.42mm −12.58mm −5.92mm 0.56mm

Bot et al6 11.83mm −11.63mm −5.80mm 1.34mm

Akram et al25 10.83mm −13.31mm −7.01mm 2.41mm

Left hemisphere

Sweet spot, center of mass −12.68mm −13.53mm −5.38mm

Horn et al,5 Caire et al8 −12.58mm −13.41mm −5.87mm 0.52mm

Bot et al6 −12.02mm −12.46mm −5.78mm 1.32mm

Akram et al25 −11.00mm −14.00mm −7.00mm 2.38mm
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Clinical Implications
Our study provides new functional sweet spots for dif-

ferent motor symptoms, which we make freely available

within the Lead-DBS toolbox (https://www.lead-dbs.

org/) and the Open Science Framework (https://dx.doi.

org/10.17605/OSF.IO/YBDJF). With recent and

upcoming DBS hardware like directional DBS leads,

the sheer amount of possible stimulation settings28 can

increase the programming burden for both patients and

clinicians, especially during monopolar reviews, which

have long been promoted as the first programming step

after implantation.47,48 Using an independent cohort

with directional leads, we could demonstrate that

stimulation overlap with the sweet spot is a significant

predictor for acute motor responses to DBS. Thus, visu-

alizing a patient’s DBS lead together with the functional

sweet spots might be able to guide clinical DBS pro-

gramming by providing a starting point for further opti-

mization (see Fig 4B, C).27 Furthermore, our functional

sweet spot might serve as the basis for semiautomatic

optimization strategies, which have been proposed for

several years16 but remain to be implemented in clinical

routine. New algorithms that can optimize DBS settings

almost in real time to maximize overlap with a target

structure and to minimize stimulation spread into adja-

cent structures at some point could replace time-

consuming conventional programming strategies.49

However, our results highlight that one first needs to

identify the most promising target structure and that

functional sweet spots might lead to much better results

than atlas-based targets like the STN. In addition to its

implications for postoperative programming, one could

also ask whether our sweet spot should impact surgical

targeting. Although our results suggest that stimulation

of the STN’s surroundings is important for symptom

improvement, the center of mass of the sweet spot was

still positioned inside the dorsal STN. Furthermore,

this point was virtually identical5,8 or very close to6,25

previously published sweet spots. We thus think that

direct surgical targeting of the dorsal STN still is the

most viable strategy. Nonlinear transformation of the

mentioned sweet spots via the MNI template into indi-

vidual patient space might, however, improve targeting

compared to more traditional coordinate- or landmark-

based approaches.

Conclusion
This study demonstrates that sweet spots determined from

probabilistic stimulation mapping can predict acute and

chronic DBS outcome in PD patients implanted in

the STN.
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