001     864238
005     20240711113851.0
024 7 _ |a 10.1016/j.nme.2018.12.009
|2 doi
024 7 _ |a 2128/22567
|2 Handle
024 7 _ |a WOS:000460107500022
|2 WOS
037 _ _ |a FZJ-2019-04072
082 _ _ |a 624
100 1 _ |a Huber, Alexander
|0 P:(DE-Juel1)130040
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Determination of tungsten sources in the JET-ILW divertor by spectroscopic imaging in the presence of a strong plasma continuum
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1565266196_18550
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The identification of the sources of atomic tungsten and the measurement of their radiation distribution in front of all plasma-facing components has been performed in JET with the help of two digital cameras with the same two-dimensional view, equipped with interference filters of different bandwidths centred on the W I (400.88 nm) emission line. A new algorithm for the subtraction of the continuum radiation was successfully developed and is now used to evaluate the W erosion even in the inner divertor region where the strong recombination emission is dominating over the tungsten emission. Analysis of W sputtering and W redistribution in the divertor by video imaging spectroscopy with high spatial resolution for three different magnetic configurations was performed. A strong variation of the emission of the neutral tungsten in toroidal direction and corresponding W erosion has been observed. It correlates strongly with the wetted area with a maximal W erosion at the edge of the divertor tile.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 1
700 1 _ |a Kirschner, A.
|0 P:(DE-Juel1)2620
|b 2
|u fzj
700 1 _ |a Ström, P.
|0 0000-0001-9299-3262
|b 3
700 1 _ |a Sergienko, G.
|0 P:(DE-Juel1)130158
|b 4
700 1 _ |a Borodkina, Irina
|0 P:(DE-Juel1)171707
|b 5
700 1 _ |a Douai, D.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jachmich, S.
|0 P:(DE-Juel1)130043
|b 7
|u fzj
700 1 _ |a Linsmeier, C. h.
|0 P:(DE-Juel1)157640
|b 8
700 1 _ |a Lomanowski, B.
|0 P:(DE-Juel1)174134
|b 9
|u fzj
700 1 _ |a Matthews, G. F.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Mertens, P. h.
|0 P:(DE-Juel1)4596
|b 11
773 _ _ |a 10.1016/j.nme.2018.12.009
|g Vol. 18, p. 118 - 124
|0 PERI:(DE-600)2808888-8
|p 118 - 124
|t Nuclear materials and energy
|v 18
|y 2019
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864238/files/1-s2.0-S2352179118301406-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864238/files/1-s2.0-S2352179118301406-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864238
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130040
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)2620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130043
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)174134
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)4596
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21