Constraints on sequence processing speed in biological neuronal networks

Younes Bouhadjar 1,2 , Markus Diesmann 1,3 , Rainer Wasser 2,4 , Dirk J. Wouters⁴, Tom Tetzlaff¹,

- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- ² Peter Grünberg Institute (PGI-7), Jülich Research Centre and JARA, Jülich, Germany
- ³ Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty and Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
- ⁴ Institute of Electronic Materials (IWE 2) and JARA-FIT, RWTH Aachen University, Aachen, Germany

Contact: y.bouhadjar@fz-juelich.de

Introduction

Learning and processing temporal sequences is a fundamental computation performed by the neocortex [1].

- most cognitive tasks, such as reading, motor control, or sensory processing (visual, tactile, auditory), can be described in terms of sequence processing.
- sequence processing refers to a context dependent prediction of elements in discrete time series and the generation of a mismatch signal if the prediction doesn't match the actual input.

The Hierarchical Temporal Memory (HTM) model provides a mechanistic description of sequence processing by neuronal networks [2]. It accounts for

- morphology of cortical (pyramidal) neurons,
- functional role of dendritic action potentials,
- online continuous learning via local learning rules,
- context dependency (higher-order predictions), and
- multiple simultaneous predictions.

The HTM model is based on binary neurons and an abstract, discrete-time dynamics.

What features of biological neural networks determine sequence processing speed?

Studying sequence processing speed requires reformulating the HTM model in terms of biological ingredients, in particular

- a continuous time dynamics with spike based interaction between network elements, and
- neuronal, synaptic and plasticity dynamics with realistic time constants [3].

Hierarchical Temporal Memory (HTM)

(figure taken from [2]) HTM network model Active cells • Inactive cells Learns complex high-order sequences Depolarized e.g. ABCD vs XBCY (predictive) cells time Before learning Same columns but only one cell active per column after learning. After learning

- external input (sequence elements) activates specific subset of minicolumns
- unpredicted stimulus causes firing of all neurons in this set of minicolumns ("mismatch signal")
- predicted stimulus leads to sparse activity

Spiking HTM Model

Neuron model

- excitatory neurons composed of a soma and a number of dendritic compartments
- each compartment modeled as a leaky integrate-and-fire (LIF) unit
- bidirectional coupling between dendritic compartments and soma (backpropagation)
- inhibitory neurons (LIF) coupled to the soma

- network composed of a number of minicolumns (M), each representing an element in a sequence
- each minicolumn composed of a number of excitatory neurons (n_E) , recurrently connected to an inhibitory neuron, and driven by a feedforward input (stimulus)
- sparse random connectivity between minicolumns, subject to spike-timing-dependent structural plasticity [4]

Plasticity model

Potential connectivity

- - Inhibitory connection

- spike-timing-dependent structural plasticity [4]
- each synapse characterized by permanence (P) and weight (J)

Results

Task

- prediction of characters in a set of sequences
- each sequence is composed of C characters

Prediction performance

- monotonous decrease of prediction error with number of training episodes
- saturation of prediction error due to residual task ambiguity

batch 2 batch 1 error (%) 60 100 150 200 250 350 number of episodes

A, E, C, .../D, A, F, .../A, E, C, .../D, A, F, .../...

time

Processing speed

- model predicts optimal range of interstimulus intervals
- lower and upper bound of interstimulus interval determined by neuronal time constants and postsynaptic potential amplitudes

Conclusion

- revised HTM model supports successful sequence processing
- prediction of optimal range of processing speeds (inter-stimulus intervals) with lower and upper bounds constrained by neuronal and synaptic parameters (e.g. time constants, coupling strengths)

Outlook

(figure taken from [2])

- upscaling of task complexity
- comparison to results of psychophysical experiments

References

- [1] Hawkins, J., and Blakeslee, S. (2007). On intelligence: How a new understanding of the brain will lead to the creation of truly intelligent machines. Macmillan. [2] Hawkins, J., and Ahmad, S. (2016). Why neurons have thousands of synapses, a theory of sequence memory in neocortex. Frontiers in Neural Circuits 10.
- Avermann, M., Tomm, C., Mateo, C., Gerstner, W., and Petersen, C. C. (2012). Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. Journal of neurophysiology, 107(11), 3116-3134.
- Nevian, T., and Sakmann, B. (2006). Spine Ca2+ signaling in spike-timing-dependent plasticity. Journal of Neuroscience, 26(43), 11001-11013.