Constraints on sequence processing speed in
biological neuronal networks
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Introduction Spiking HTM Model
Learning and processing temporal sequences is a fundamental computation performed by the neo- Neuron model
cortex [1]. connections from e excitatory neurons composed of a soma and a

other neurons @ Inhibitory neuron (LIF)  number of dendritic compartments

e most cognitive tasks, such as reading, motor control, or sensory processing (visual, tactile,

auditory), can be described in terms of sequence processing. ' Soma (LIF) e cach compartment modeled as a leaky

@ sequence processing refers to a context dependent prediction of elements in discrete time series @ Dendrite (LIF) integrate-and-fire (LIF) unit

and the generation of a mismatch signal if the prediction doesn't match the actual input. —® Excitatory connection ® bidirectional coupling between dendritic com-

_ o Inhibitory connection  Partments and soma (backpropagation)

--e Somatodendritic e inhibitory neurons (LIF) coupled to the soma

The Hierarchical Temporal Memory (HTM) model provides a mechanistic description of
: Stimulus
sequence processing by neuronal networks [2]. It accounts for

e morphology of cortical (pyramidal) neurons, Network model

Q Q e network composed of a number of minicolumns
o ’ (M), each representing an element in a se-

e functional role of dendritic action potentials,

e online continuous learning via local learning rules,

e context dependency (higher-order predictions), and g Q ) ? quence
e multiple simultaneous predictions. 's A < ) . o e.ach minicolumn composed of a number of ex-
. . . . . ¢ citatory neurons (ng), recurrently connected
The HTM model is based on binary neurons and an abstract, discrete-time dynamics. < ) Q< to an inhibitory neuron, and driven by a feed-
: : : : Stimulus € — forward input (stimulus)
What features of biological neural networks determine sequence processing speed? OExcitatory neuron | ¥ o o
@ Inhibitory neuron e sparse random connectivity between mini-

. . . . . . . —e Static g, A B C ' ke_timino-
Studying sequence processing speed requires reformulating the HTM model in terms of biological —e Plastic—<citatory columns, SUbJe_C_t to spike-timing-dependent
ingredients, in particular Potential connectivity structural plasticity [4]

- -o Inhibitory connection
e a continuous time dynamics with spike based interaction between network elements, and

Plasticity model

e neuronal, synaptic and plasticity dynamics with realistic time constants [3]. presynaptic
YU NEATON  hostsynaptic AP
e spike-timing-dependent P<6, |=0 Q euron
- - structural plasticity (4
Hierarchical Temporal Memory (HTM) o e ap
e each synapse characterized potential synaspe

by permanence (P) and

' >
_ AT tpost - tpre
HTM neuron model weight (J) P>0, |=W Q\@
pyramidal neuron HTM neuron

mature synapse
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N G e Results
FTTeTeeeT e dendritic branches serve as pat- Task AT fime
@ Ol LI L P A L 4?OﬂteXt tern detectors d . f h . - X f > >
2 il | e prediction of characters in a set of sequences
SESTEEUTR e pattern detection leads to den- _ AE G .../ID,AF A E C D A F, L
TTEETERTTS L e each sequence is composed of C' characters seq 1 seq 2 seq 1 seq 2
dritic spike and strong depolar- , .
ization of the soma ("predic- . .. batch 1 batch 2
S~ - Prediction performance
tion")
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ST
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e monotonous decrease of predic- = 60
(figure taken from [2]) tion error with number of training c
HTM network model episodes = 40-
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Same columns e lower and upper bound of interstim- S
but only one cell active per column after learning. - - B
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bl 2 = ~ = ' Conclusion
(figure taken from [2]) e revised HTM model supports successful sequence processing
e external input (sequence elements) activates specific subset of minicolumns e prediction of optimal range of processing speeds (inter-stimulus intervals) with lower and up-
e unpredicted stimulus causes firing of all neurons in this set of minicolumns ("mismatch signal") per bounds constrained by neuronal and synaptic parameters (e.g. time constants, coupling
e predicted stimulus leads to sparse activity strengths)
Outlook

e upscaling of task complexity

e comparison to results of psychophysical experiments
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