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Introduction

Learning and processing temporal sequences is a fundamental computation performed by the neo-
cortex [1].

•most cognitive tasks, such as reading, motor control, or sensory processing (visual, tactile,
auditory), can be described in terms of sequence processing.

• sequence processing refers to a context dependent prediction of elements in discrete time series
and the generation of a mismatch signal if the prediction doesn’t match the actual input.

The Hierarchical Temporal Memory (HTM) model provides a mechanistic description of
sequence processing by neuronal networks [2]. It accounts for

•morphology of cortical (pyramidal) neurons,

• functional role of dendritic action potentials,

• online continuous learning via local learning rules,

• context dependency (higher-order predictions), and

•multiple simultaneous predictions.

The HTM model is based on binary neurons and an abstract, discrete-time dynamics.

What features of biological neural networks determine sequence processing speed?

Studying sequence processing speed requires reformulating the HTM model in terms of biological
ingredients, in particular

• a continuous time dynamics with spike based interaction between network elements, and

• neuronal, synaptic and plasticity dynamics with realistic time constants [3].
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• dendritic branches serve as pat-
tern detectors

• pattern detection leads to den-
dritic spike and strong depolar-
ization of the soma ("predic-
tion")

HTM network model

Learns complex high-order sequences

e.g. ABCD vs XBCY  
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• external input (sequence elements) activates specific subset of minicolumns

• unpredicted stimulus causes firing of all neurons in this set of minicolumns ("mismatch signal")

• predicted stimulus leads to sparse activity

Spiking HTM Model
Neuron model

• excitatory neurons composed of a soma and a
number of dendritic compartments

• each compartment modeled as a leaky
integrate-and-fire (LIF) unit

• bidirectional coupling between dendritic com-
partments and soma (backpropagation)

• inhibitory neurons (LIF) coupled to the soma

Network model
• network composed of a number of minicolumns

(M), each representing an element in a se-
quence

• each minicolumn composed of a number of ex-
citatory neurons (nE), recurrently connected
to an inhibitory neuron, and driven by a feed-
forward input (stimulus)

• sparse random connectivity between mini-
columns, subject to spike-timing-dependent
structural plasticity [4]

Plasticity model

• spike-timing-dependent
structural plasticity [4]

• each synapse characterized
by permanence (P) and
weight (J)

Results
Task

• prediction of characters in a set of sequences

• each sequence is composed of C characters
A, E, C, .../D, A, F, .../A, E, C, .../D, A, F, .../...

Prediction performance

•monotonous decrease of predic-
tion error with number of training
episodes

• saturation of prediction error due to
residual task ambiguity

nE=30, M=10, C=10

Processing speed

•model predicts optimal range of in-
terstimulus intervals

• lower and upper bound of interstim-
ulus interval determined by neuronal
time constants and postsynaptic po-
tential amplitudes

Conclusion
• revised HTM model supports successful sequence processing

• prediction of optimal range of processing speeds (inter-stimulus intervals) with lower and up-
per bounds constrained by neuronal and synaptic parameters (e.g. time constants, coupling
strengths)

Outlook

• upscaling of task complexity

• comparison to results of psychophysical experiments
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