000864324 001__ 864324
000864324 005__ 20240708133017.0
000864324 0247_ $$2doi$$a10.1016/j.ijhydene.2019.10.080
000864324 0247_ $$2Handle$$a2128/23833
000864324 0247_ $$2WOS$$aWOS:000502888800040
000864324 037__ $$aFZJ-2019-04130
000864324 082__ $$a620
000864324 1001_ $$0P:(DE-Juel1)168335$$aReuss, Markus$$b0$$eCorresponding author$$ufzj
000864324 245__ $$aModeling Hydrogen Networks for Future Energy Systems: A Comparison of Linear and Nonlinear Approaches
000864324 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000864324 3367_ $$2DRIVER$$aarticle
000864324 3367_ $$2DataCite$$aOutput Types/Journal article
000864324 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604409649_593
000864324 3367_ $$2BibTeX$$aARTICLE
000864324 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864324 3367_ $$00$$2EndNote$$aJournal Article
000864324 520__ $$aCommon energy system models that integrate hydrogen transport in pipelines typically simplify fluid flow models and reduce the network size in order to achieve solutions quickly. This contribution analyzes two different types of pipeline network topologies (namely, star and tree networks) and two different fluid flow models (linear and nonlinear) for a given hydrogen capacity scenario of electrical reconversion in Germany to analyze the impact of these simplifications. For each network topology, robust demand and supply scenarios are generated. The results show that a simplified topology, as well as the consideration of detailed fluid flow, could heavily influence the total pipeline investment costs. For the given capacity scenario, an overall cost reduction of the pipeline costs of 37% is observed for the star network with linear cost compared to the tree network with nonlinear fluid flow. The impact of these improvements regarding the total electricity reconversion costs has led to a cost reduction of 1.4%, which is fairly small. Therefore, the integration of nonlinearities into energy system optimization models is not recommended due to their high computational burden. However, the applied method for generating robust demand and supply scenarios improved the credibility and robustness of the network topology, while the simplified fluid flow consideration can lead to infeasibilities. Thus, we suggest the utilization of the nonlinear model for post-processing to prove the feasibility of the results and strengthen their credibility, while retaining the computational performance of linear modeling.
000864324 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000864324 536__ $$0G:(DE-HGF)ES2050$$aES2050 - Energie Sytem 2050 (ES2050)$$cES2050$$x1
000864324 588__ $$aDataset connected to CrossRef
000864324 7001_ $$0P:(DE-Juel1)165160$$aWelder, Lara$$b1$$ufzj
000864324 7001_ $$0P:(DE-Juel1)171366$$aThürauf, Johannes$$b2
000864324 7001_ $$0P:(DE-Juel1)130470$$aLinssen, Jochen$$b3$$ufzj
000864324 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b4$$ufzj
000864324 7001_ $$0P:(DE-HGF)0$$aSchewe, Lars$$b5
000864324 7001_ $$0P:(DE-HGF)0$$aSchmidt, Martin$$b6
000864324 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b7$$ufzj
000864324 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b8$$ufzj
000864324 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2019.10.080$$gVol. 44, no. 60, p. 32136 - 32150$$n60$$p32136 - 32150$$tInternational journal of hydrogen energy$$v44$$x0360-3199$$y2019
000864324 8564_ $$uhttps://juser.fz-juelich.de/record/864324/files/Modeling%20Hydrogen%20Networks%20for%20Future%20Energy%20Systems%20-%20submission.pdf$$yPublished on 2019-11-15. Available in OpenAccess from 2021-11-15.
000864324 8564_ $$uhttps://juser.fz-juelich.de/record/864324/files/Modeling%20Hydrogen%20Networks%20for%20Future%20Energy%20Systems%20-%20submission.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-15. Available in OpenAccess from 2021-11-15.
000864324 909CO $$ooai:juser.fz-juelich.de:864324$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168335$$aForschungszentrum Jülich$$b0$$kFZJ
000864324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165160$$aForschungszentrum Jülich$$b1$$kFZJ
000864324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130470$$aForschungszentrum Jülich$$b3$$kFZJ
000864324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b4$$kFZJ
000864324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b7$$kFZJ
000864324 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b7$$kRWTH
000864324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b8$$kFZJ
000864324 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000864324 9141_ $$y2019
000864324 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864324 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000864324 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864324 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000864324 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2017
000864324 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864324 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864324 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864324 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864324 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864324 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000864324 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864324 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864324 920__ $$lyes
000864324 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000864324 9801_ $$aFullTexts
000864324 980__ $$ajournal
000864324 980__ $$aVDB
000864324 980__ $$aI:(DE-Juel1)IEK-3-20101013
000864324 980__ $$aUNRESTRICTED
000864324 981__ $$aI:(DE-Juel1)ICE-2-20101013