001     864324
005     20240708133017.0
024 7 _ |a 10.1016/j.ijhydene.2019.10.080
|2 doi
024 7 _ |a 2128/23833
|2 Handle
024 7 _ |a WOS:000502888800040
|2 WOS
037 _ _ |a FZJ-2019-04130
082 _ _ |a 620
100 1 _ |a Reuss, Markus
|0 P:(DE-Juel1)168335
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Modeling Hydrogen Networks for Future Energy Systems: A Comparison of Linear and Nonlinear Approaches
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604409649_593
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Common energy system models that integrate hydrogen transport in pipelines typically simplify fluid flow models and reduce the network size in order to achieve solutions quickly. This contribution analyzes two different types of pipeline network topologies (namely, star and tree networks) and two different fluid flow models (linear and nonlinear) for a given hydrogen capacity scenario of electrical reconversion in Germany to analyze the impact of these simplifications. For each network topology, robust demand and supply scenarios are generated. The results show that a simplified topology, as well as the consideration of detailed fluid flow, could heavily influence the total pipeline investment costs. For the given capacity scenario, an overall cost reduction of the pipeline costs of 37% is observed for the star network with linear cost compared to the tree network with nonlinear fluid flow. The impact of these improvements regarding the total electricity reconversion costs has led to a cost reduction of 1.4%, which is fairly small. Therefore, the integration of nonlinearities into energy system optimization models is not recommended due to their high computational burden. However, the applied method for generating robust demand and supply scenarios improved the credibility and robustness of the network topology, while the simplified fluid flow consideration can lead to infeasibilities. Thus, we suggest the utilization of the nonlinear model for post-processing to prove the feasibility of the results and strengthen their credibility, while retaining the computational performance of linear modeling.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
536 _ _ |a ES2050 - Energie Sytem 2050 (ES2050)
|0 G:(DE-HGF)ES2050
|c ES2050
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Welder, Lara
|0 P:(DE-Juel1)165160
|b 1
|u fzj
700 1 _ |a Thürauf, Johannes
|0 P:(DE-Juel1)171366
|b 2
700 1 _ |a Linssen, Jochen
|0 P:(DE-Juel1)130470
|b 3
|u fzj
700 1 _ |a Grube, Thomas
|0 P:(DE-Juel1)129852
|b 4
|u fzj
700 1 _ |a Schewe, Lars
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schmidt, Martin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 7
|u fzj
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 8
|u fzj
773 _ _ |a 10.1016/j.ijhydene.2019.10.080
|g Vol. 44, no. 60, p. 32136 - 32150
|0 PERI:(DE-600)1484487-4
|n 60
|p 32136 - 32150
|t International journal of hydrogen energy
|v 44
|y 2019
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/864324/files/Modeling%20Hydrogen%20Networks%20for%20Future%20Energy%20Systems%20-%20submission.pdf
|y Published on 2019-11-15. Available in OpenAccess from 2021-11-15.
856 4 _ |u https://juser.fz-juelich.de/record/864324/files/Modeling%20Hydrogen%20Networks%20for%20Future%20Energy%20Systems%20-%20submission.pdf?subformat=pdfa
|x pdfa
|y Published on 2019-11-15. Available in OpenAccess from 2021-11-15.
909 C O |o oai:juser.fz-juelich.de:864324
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168335
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130470
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)129928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156460
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21