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ABSTRACT 26 

Understanding the dynamic response of soil moisture to rainfall is critical for 27 

hydrological modelling in arid and semi-arid basins. However, little is known about 28 

rainfall-related soil moisture dynamics in arid high-altitude mountainous areas due to 29 

the absence of long-term high-resolution soil moisture observations. In this study, we 30 

investigated the dynamic response processes of profile soil moisture using data from a 31 

soil moisture monitoring network in the Qilian Mountains established in 2013 covering 32 

altitudes from 2,000 - 5,000 m a.s.l. To investigate the effects of different land covers 33 

on soil moisture response, we selected data from eight soil moisture stations with the 34 

same soil textural class and slope, but different land covers (scrubland, meadow, high 35 

coverage grassland (HCG), medium coverage grassland (MCG) and barren land). 36 

Several indices were evaluated to quantitatively describe soil moisture dynamics during 37 

the growing seasons of 2014 - 2016 based on soil wetting events. In addition, 38 

HYDRUS-1D simulations were used to further analyze the effect of land cover on soil 39 

moisture dynamics. Our results showed that soil moisture response amplitudes along 40 

profile are similar under MCG and barren land, but significantly different under 41 

scrubland, meadow and HCG. The rate of soil moisture increment decreased 42 

significantly with depth for all land covers, except for the HCG. The temporal pattern 43 

of soil moisture increase was highly variable along the soil profiles depending on land 44 

cover type. In particular, the difference of response time between the adjacent layers 45 

varied from negative values to 280 hours with depth. Preferential flow occurred mostly 46 

in soils covered by scrubland. Water transferability was higher in deeply rooted soil. 47 



    

Furthermore, sensitivity analysis indicated that soil hydraulic properties are key factors 48 

in regulating profile soil wetting events. Our results show that the soil moisture response 49 

indices are useful to quantitatively characterize patterns in profile soil moisture 50 

dynamics, and provide new insights into the soil moisture profile wetting process (e.g. 51 

occurrence of preferential flow etc.), which helps for effective model parameterization 52 

and validation, in turn improving hydrological modelling in arid high-altitude 53 

mountainous areas. 54 
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1. Introduction 58 

Mountain areas are the “water towers” of the world because of their importance in 59 

providing water resources for downstream areas (Immerzeel et al., 2010). Mountain 60 

areas provide up to 95% of the freshwater supply in some areas (Liniger et al., 1998), 61 

such as the arid and semiarid watersheds in northwestern China (Cheng et al., 2014). 62 

Soil moisture is an essential variable in hydrology, meteorology, agriculture, and 63 

ecology (Western et al., 2004; Seneviratne et al., 2010; Jung et al., 2010). Soil moisture 64 

and its dynamic response to rainfall control the interaction among the hydrological 65 

processes of precipitation, infiltration, evapotranspiration, runoff and drainage (Koster 66 

et al., 2004; Zehe et al., 2005; Wang et al., 2012a; Farrick et al., 2014; Vereecken et al., 67 

2015). Thus, knowledge about the processes driving rainfall-related soil moisture 68 

dynamics is essential to understand the mechanisms of rainfall-runoff processes, and to 69 

improve land surface and hydrological modeling, especially in data-scarce mountainous 70 

catchments (Blume et al., 2009; He et al., 2012; McDonnell and Beven, 2014). 71 

In recent years, mountain areas have received growing attention in the context of 72 

climate change and adaptation studies and water resources management (Lutz et al., 73 

2014; Chen et al., 2016; Ran et al., 2018). However, the dynamics of soil moisture 74 

response to rainfall is still poorly investigated in high mountain areas (He et al., 2012; 75 

Pellet and Hauck, 2017). For example, many studies have focused on understanding the 76 

soil moisture response to rainfall. Most of these studies explored the dynamic response 77 

through qualitative description of time series of soil moisture (Kim et al., 2009; Li et 78 



    

al., 2013a; Yu et al., 2015) and descriptive statistics for the specific status of soil 79 

moisture (e.g. probability distributions (Laio et al., 2001; Liu et al., 2015), and standard 80 

deviation (Rosenbaum et al., 2012; Brocca et al., 2014)). A process-based 81 

understanding of soil moisture response to rainfall remains incomplete and is urgently 82 

needed for advancing ecohydrological and critical zone modelling (Green and Erskine, 83 

2011; Clark et al., 2017; Li et al., 2017; Guo and Lin, 2018). Moreover, quantification 84 

of soil moisture response processes using continuous in-situ monitoring data at different 85 

depths with high temporal resolution can provide alternative metrics for process-based 86 

soil hydrological model evaluation (Green and Erskine, 2011; Wiekenkamp et al., 2016; 87 

Guo and Lin, 2018). 88 

Land cover change is known to have strong influence on soil moisture dynamics 89 

after rainfall by altering interception (Laio et al., 2001; Li et al., 2013a), infiltration 90 

(Rossi et al., 2018; Liang et al., 2011; Brooks et al., 2015), plant water uptake (He et 91 

al., 2013; Kurc and Small, 2004), and evaporation processes (Farmer et al., 2003; Jian 92 

et al., 2015). However, uncertainty remains about the soil water response regime for 93 

land cover types under different conditions (Moran et al., 2010; Li et al., 2013a; 2018b). 94 

For example, many studies showed a more dynamic soil moisture response regime 95 

under grassland than scrubland or woodland (Wang et al., 2013; Wang et al., 2008; Yu 96 

et al., 2017; Lozano-Parra et al., 2015; Li et al., 2013a). Other studies, however, showed 97 

a more dynamic response regime under scrubland or woodland than grassland (Jin et 98 

al., 2018; Li et al., 2013a; Liang et al. 2011), and some studies also found similar 99 



    

response patterns for different land covers (Moran et al., 2010; He et al., 2012; Zhu et 100 

al., 2014). Furthermore, understanding of profile soil moisture response processes 101 

during and after rainfall is still unclear (Jin et al., 2018), which is vital for the detection 102 

and understanding of subsurface flow (Green and Erskine, 2011; Wiekenkamp et al., 103 

2016; Guo and Lin, 2018) and runoff generation (Blume et al., 2009; Kim, 2009). 104 

The response regimes under different land covers are particularly poorly understood 105 

in data-scarce mountainous areas due to the difficulties of installing and maintaining 106 

long-term profile soil moisture monitoring networks with high time resolution (Pellet 107 

and Hauck, 2017; Viviroli et al., 2011). Amongst the numerous established long-term 108 

soil moisture monitoring networks (e.g. Dorigo et al., 2011; Ochsner et al., 2013; 109 

Quiring et al., 2016; Gasch et al., 2017), only a few networks have been established in 110 

high and cold mountain areas (Su et al., 2011; Pellet and Hauck, 2017; Li et al., 2013b; 111 

Li et al., 2018). Only a few studies have focused on rainfall-related soil moisture 112 

dynamics processes for land cover types at small scale in the high and cold mountain 113 

areas (He et al., 2012; Sun et al., 2015; Yang et al., 2017). Meanwhile, the transfer of 114 

small-scale information to larger scales remains very challenging due to the high 115 

heterogeneity of soil moisture in topographically complex mountainous areas (Brocca 116 

et al., 2010; Thompson et al., 2011; Famiglietti et al., 2008). 117 

Within this context, the aim of this study is to quantitatively describe the patterns 118 

of rainfall-related profile soil moisture response processes for typical land covers in a 119 

high-altitude, topographically complex alpine region using data from a long-term large-120 



    

scale soil moisture monitoring network. The results are expected to shed insights into 121 

rainfall-related profile soil hydrological processes under typical land covers, and to 122 

provide important reference values for key parameters in large scale hydrological 123 

modelling and water resources management in arid and semi-arid watersheds. 124 

2. Study Area, Datasets and Methods 125 

2.1. Study area 126 

The Heihe River Watershed is the second largest inland river watershed (or terminal 127 

lake) in China (Cheng et al., 2014). The upper stream of the Heihe River Watershed was 128 

selected as our study area. It is located in the Qilian Mountains at the  northern margin 129 

of the Qinghai-Tibet Plateau with an area of about 27×103 km2 (97°29 -101°32  E, 130 

37°43 -39°39  N) (Fig. 1). Mountain runoff provides almost all of the water for the 131 

entire watershed, sustains a population of about 1,21 million in the watershed, irrigates 132 

2.4×105 hectares of farmland for maintaining one of the major grain production bases 133 

in China, and supports a fragile ecological system in the lower reach of the Heihe River 134 

(He et al., 2009; Li et al., 2015a).  135 

The study area is subject to a temperate semi-arid and semi-humid continental 136 

monsoon climate. Most of the study area is located between 2,000 - 5,000 m above sea 137 

level (a.s.l.). Annual precipitation ranges from 200 mm in the steppe to 700 mm high 138 

up in the mountain ranges, and is characterized by a high seasonal variability with over 139 

60% of precipitation falling in the summer months (Li et al., 2009). The mean annual 140 



    

potential evapotranspiration is about 700 - 2,000 mm (Pan and Tian, 2001). The annual 141 

average temperature ranges from -3.1 °C to 3.6 °C based on the meteorological data 142 

from 1960 to 2012 (Zhang et al., 2016). The strong vertical difference in mean annual 143 

temperature has led to a distinct vertical land-cover zonation that comprises alpine 144 

meadow, grassland, shrub land, sparse vegetated land, and forest (Yang et al., 2015; 145 

Zhou et al., 2016; Feng et al., 2013). The main soil types are alpine steppe soil (FAO, 146 

Calcic chernozems), chestnut soil (FAO, Kastanozems), and alpine frost desert soil 147 

(FAO, Gelicregosols) (Li et al., 2009). The main soil textural classes in the study area 148 

are silt loam, silt and sandy loam (United States Department of Agriculture or USDA 149 

classification) (Tian et al., 2017). 150 

2.2. Soil moisture network 151 

In order to investigate the influence of different environmental factors on profile 152 

soil moisture dynamics in the upstream of the Heihe River Watershed in the Qilian 153 

Mountain, a long-term monitoring network consisting of 32 soil moisture stations has 154 

been established since July 2013 (Fig. 1). The locations of the soil moisture stations 155 

were chosen to be representative of the main land cover and soil types as well as the 156 

different altitude levels of the study area (Jin et al., 2015; Zhang et al., 2017a). The 157 

network constitutes the best possible coverage of the study area given the constraints 158 

of steep topography, rough and dangerous road conditions, accessibility to the 159 

monitoring stations, as well as financial resources (Fig. 1).  160 



    

At each station, a soil pit of sufficient size was dug to enable insertion of the soil 161 

moisture sensors in multiple depths. The combined soil moisture and temperature probe 162 

ECH20 5TE (Decagon Devices Inc., Pullman, USA) was installed horizontally at 163 

depths of 5, 15, 25, 40 and 60 cm below the soil surface. The 5TE sensors were installed 164 

in such a way to avoid influence on the vertical water flow (Lozano-Parra et al., 2015). 165 

After installation, the pit was carefully refilled with the original soil material and 166 

compacted to the original bulk density layer by layer to avoid perturbations as much as 167 

possible. The soil profiles were divided into five layers according to the installation 168 

depths of the five sensors (layer 1: 0-10 cm; layer 2: 10-20 cm; layer 3: 20-30 cm; layer 169 

4: 30-50 cm; layer 5: 50-70 cm). Soil moisture was measured at a temporal resolution 170 

of 30 min, which is in most cases sufficient to study soil hydrological processes 171 

(Lozano-Parra et al., 2015). Soil samples for each soil moisture monitoring station were 172 

collected during installation (more than 7 kg from each profile of each stations) and 173 

taken to the lab for calibration. A soil-specific calibration was carried out for each 174 

station following the step-by-step instruction guide in the manual provided by Decagon 175 

(Cobos and Chambers, 2010; Zhang et al., 2017a). 176 

Regular station maintenance (e.g. data collection, battery and sensor check and 177 

replacement) took place twice a year at the beginning of June and at the end of October. 178 

However, the large scale of the area and the harsh mountainous environment are 179 

challenging for soil moisture network maintenance. In addition, wireless data 180 

transmission was not possible as the study area is not covered by a mobile 181 



    

communication network. Therefore, some data gaps occurred due to battery or sensor 182 

failures and damages due to livestock (sheep and yaks) and rats. 183 

In order to study the soil moisture regimes under different land covers, we selected 184 

a subset of stations from the entire soil moisture network with different land covers, 185 

similar soil texture (silt loam, which is the main soil texture in the study area (Zhao et 186 

al., 2014; Su et al., 2011)), small slope (0-9°), and with data gaps smaller than 3 months 187 

in the period 2014-2016. Based on these criteria, eight typical soil moisture stations 188 

were selected for this study that included the land covers of scrubland (one soil moisture 189 

station, with gap from 7.2014 to 9.2014 at layer 4), meadow (one station, with gap 190 

during 6.2015 at layer 5), high coverage grassland (two stations, with gap during 9.2014 191 

at layer 1), medium coverage grassland (two stations, no gaps) and barren land (two 192 

stations, no gaps). The locations of the selected soil moisture stations are shown in Fig. 193 

1. Additionally, table 1 and Table A1 present the basic characteristics and soil properties 194 

of the soil moisture stations. Here, we analyze soil moisture observations from the 195 

growing seasons from May to October of 2014 to 2016 (Liu et al., 2015) (Fig. 2). 196 

During the installation of the soil moisture sensors, undisturbed and disturbed soil 197 

samples were taken using metal cylinders and self-sealing bags, respectively. The soil 198 

samples were used to determine key soil properties for each soil moisture station (i.e. 199 

saturated hydraulic conductivity, soil water retention function, soil texture, soil bulk 200 

density and soil organic carbon content). Other station-related parameters include land 201 

cover type (i.e. scrubland, meadow, high coverage grassland, medium coverage 202 



    

grassland, and barren land), slope, aspect, slope position, and rooting depth. A detailed 203 

description of the soil properties is given in Tian et al. (2017).  204 

Soil water retention curves were determined using the centrifuge method 205 

(KOKUSAN-H-1400pF, Kokusan Corp., Tokyo; Reatto et al., 2008). The total soil 206 

porosity was calculated from soil bulk density by assuming a particle density of 2.65 g 207 

cm-3 (McKenzie et al., 2002). The Mualem-van Genuchten parameters of the soil water 208 

retention curve (Van Genuchten, 1980) were fitted to the measured data using Matlab 209 

(MathWorks, Inc., Massachusetts) (Fig. 3). 210 

2.3. Precipitation Data 211 

Rainfall observations in the Qilian Mountains are sparse (Yang et al., 2013; Chen et 212 

al., 2014a). Therefore, we established four additional meteorological stations in the 213 

study area in September 2013. Furthermore, we used rainfall data from eight 214 

meteorological stations operated by the Heihe Ecohydrological Remote Sensing 215 

Experiment (http://www.heihedata.org/data). However, the representativeness of these 216 

meteorological stations is still limited for our study given the large area of the soil 217 

moisture network and the strong spatial variability of precipitation in the 218 

topographically complex mountainous area (Pan et al., 2014; Zhang et al., 2017b). Thus, 219 

the reanalysis datasets of Xiong and Yan (2013) and Zhang et al. (2018) 220 

(http://westdc.westgis.ac.cn) were also used in our study (Fig. 1). Throughout this study, 221 



    

the rainfall data were used as a reference in the process of identifying the soil moisture 222 

response events (Dorigo et al., 2013).  223 

2.4. Data analysis 224 

It is assumed that water reaches a certain depth when the soil moisture content 225 

begins to increase after a rainfall pulse (Wang et al., 2008; Laio et al., 2001; Green and 226 

Erskine, 2011). Accordingly, the soil wetting process after a rainfall was determined 227 

and characterized using the increase of soil water content at depths of 5, 15, 25, 40 and 228 

60 cm along the soil profile in this study (Lozano-Parra et al., 2015). Prior to the data 229 

analysis, a detailed data quality control was performed following the procedures of 230 

Dorigo et al. (2013), Rosenbaum et al. (2012) and Wiekenkamp et al. (2016). The data 231 

quality control uses rainfall information and the measured soil temperature data and 232 

consisted of the following steps. First, soil moisture data during seasonal freeze-thaw 233 

periods were excluded based on soil temperature data and the characteristic soil 234 

moisture dynamics in thawing and refreezing cycles (Dorigo et al., 2013; Wang et al., 235 

2017; Wang et al., 2012b; Yang et al., 2017). Second, outliers were removed using 236 

quantitative plausibility checks (values outside of 0-90 vol. % range, spikes and 237 

unreasonable fluctuation). Third, unreliable data caused by technical problems (e.g. 238 

insufficient battery power) were eliminated by visual data inspection. Fourth, 239 

temperature effects on the soil moisture data were corrected based on the methods of 240 



    

Saito et al. (2009; 2013), in which calibration equations were derived using daily 241 

fluctuations of soil water content and soil temperature (T).  242 

2.5. Identification of soil wetting events 243 

In this study, we adopted the concept of soil wetting events, which are defined as 244 

events in which a significant increase of soil moisture as a result of rainfall infiltration 245 

into the soil can be observed (McMillan and Srinivasan, 2015; Lozano-Parra et al., 246 

2015). To this end, we determined “critical points” in each soil moisture time series, i.e. 247 

turning points indicating the beginning and end of the wetting processes (see Fig. 4), 248 

and subsequently analyzed time lag and extent of the soil moisture increase. The 249 

identification of the critical points was performed automatically using a dedicated 250 

Matlab script. Following Lozano-Parra et al. (2015; 2016), we defined an increase in 251 

soil moisture of more than 0.3% as a soil wetting event in order to consider the 252 

measurement accuracy of the soil moisture sensors. Furthermore, we used a period of 253 

6 hours without effective soil moisture increment as a separation criterion to distinguish 254 

soil wetting events in our study (Lozano-Parra et al., 2015; 2016). An example of a 255 

detected soil wetting event at two depths is presented in Fig. 4. 256 

2.6. Quantification of the response pattern of soil wetting events 257 

Based on the observed soil wetting events, we evaluated a set of indices to 258 

quantitatively describe the soil moisture response and to investigate its distribution 259 



    

along the soil profile for different land covers. In the following, we present the 260 

derivation of these indices in detail. 261 

The degree of soil moisture response to a rainfall event has been analyzed by 262 

numerous soil moisture indices. For instance, McColl et al. (2017) developed a soil 263 

moisture index in which only the positive soil moisture increments during a rainfall 264 

event are considered. On the other hand, Liang et al. (2011) analyzed the maximum 265 

change in soil moisture during rainfall events by summing up the positive and negative 266 

soil moisture increments during a rainfall event. In our analysis, we define the absolute 267 

accumulated increase in soil moisture at each measurement location as follows: 268 

= ,                  (1) 269 

with 270 

=
,       > 0

0,            0
                 (2) 271 

where = ,  is the volumetric soil water content (vol.%) at the time 272 

 of the th rainfall event,  is the measurement interval (30 min),  and ET are 273 

the start and end time of the th soil wetting event, and A  is the accumulated soil 274 

water increment for a soil wetting event (i.e. the ASWI derived from the event shown 275 

in Fig. 4 for layers 1 and 2 is 17.47% and 3.06%, respectively). ASWI was calculated 276 

for all soil wetting events and for all measurement locations and subsequently 277 

aggregated across the stations for each land cover type. In addition, we calculated the 278 

ratio of ASWI between adjacent soil layers (RSWI) for the corresponding soil wetting 279 

events as:  280 



    

 (%) = 100 ×       (3) 281 

where   represents the soil layer (   = 2, 3, 4, 5),  and   are the 282 

accumulated soil water increments of layers 1 and  during the period of the th 283 

soil wetting event at layer , respectively. The RSWI of layer 2 for the event shown in 284 

Fig. 4 is 17.54%. 285 

The rate of soil wetting is a quantitative index which has been used to characterize 286 

the type of infiltration process (Lozano-Parra et al., 2016), and for the calibration of 287 

soil hydrology models (Green and Erskine, 2011; Laio et al., 2001). It considers the 288 

maximum and mean slope of the soil wetting curve and is based on the time derivative 289 

of the soil water increase:  290 

= max (100 × )            (4) 291 

= mean (100 × )          (5) 292 

where  and  are the maximum and mean rate or slope of a soil wetting 293 

curve (100 × vol. %/min), respectively. The Smax and Smean derived from the event 294 

shown in Fig. 4 for layer 1 is 34.96 and 3.88, respectively, while they are 0.81 and 0.44 295 

for layer 2. 296 

According to Sun et al. (2015), the temporal pattern of soil wetting during the 297 

infiltration event can be divided into the period between the start of a rainfall event and 298 

the start of the corresponding soil moisture response (also known as the soil moisture 299 

response time) and the period of soil moisture increase (i.e. the duration of the soil 300 



    

wetting event). Quantitative descriptions of these two periods can provide new insights 301 

into the temporal patterns of the soil wetting process along a soil profile. 302 

The difference of the soil moisture response time ( ) between two adjacent soil 303 

layers was evaluated to characterize the temporal delay of the soil wetting events with 304 

depth (Sun et al., 2015; Li et al., 2015b; Germann and Hensel, 2006). It is calculated as: 305 

=                     (6) 306 

where  and  are the response times of layer 1 and  to a rainfall event 307 

( = 2, 3, 4, 5), and  is the difference of the response times (hour). The DRT for 308 

the event shown in Fig. 4 is 0.5 hour for layer 2. The duration of the soil wetting process 309 

(h) for a specific soil layer is calculated as:  310 

Duration =                  (7) 311 

where  and  are the end and start time of the jth soil wetting event for a specific 312 

soil layer. The duration of the event shown in Fig. 4 is 7.5 hours for layer 1 and 11.5 313 

hours for layer 2.  314 

Finally, based on the increment of soil wetting event, the accumulated soil storage 315 

increment (ASSI) for different layers under different land covers were calculated as: 316 

ASSI = ×                    (8) 317 

where   is the sum of the accumulated soil moisture increment (vol. %) at 318 

layer ,   (mm)  is the corresponding measurement range of layer  319 

( , , , ,   is 100, 100, 100, 200, 200 mm, respectively, according to the 320 

installation depths of the sensors). Furthermore, the ratio between the ASSI of a specific 321 



    

layer and the sum of ASSI of the profile was calculated to normalize the vertical 322 

distribution of ASSI along depth. ASSI is the overall result of the partitioning of 323 

infiltration propagating through soil profile of 0-70 cm during the study period (Moran 324 

et al., 2010; Lozano-Parra et al., 2016). 325 

2.7. Virtual simulations of soil moisture dynamics 326 

The influence of land cover on soil moisture dynamics can be attributed both to 327 

plant characteristics (e.g. rooting depth, interception storage etc.) and soil properties  328 

that have developed in coevolution with vegetation (Jenny, 1994). Here, we use virtual 329 

simulations of soil moisture dynamics with the process-based soil hydrological model 330 

HYDRUS-1D (Simunek et al., 2005) to explore their individual roles in controlling the 331 

pattern of soil moisture dynamics. In addition, the virtual simulations serve to test the 332 

applicability of the indices used in this study. The sensitivity analysis included two 333 

different scenarios: (1) simulations of soil moisture dynamics with different soil 334 

properties but with the same crop parameters; (2) simulations with different crop 335 

parameters but with the same soil properties. Both scenarios were simulated using the 336 

same meteorological data. 337 

The modified Richards equation as implemented in Hydrus-1D (Simunek et al., 338 

2005) was used to simulate soil moisture dynamics for the two scenarios. The soil 339 

hydraulic parameters were derived by fitting the measured soil retention curve to the 340 

Mualem-van Genuchten model: 341 



    

( ) =
+

[ | | ]
     < 0

                             0
                     342 

(9) 343 

( ) = 1 (1
/

)                    (10) 344 

=                               (11) 345 

= 1 1 , > 1                         (12) 346 

where  and  are the saturated and residual water content (cm3/cm3), respectively, 347 

  is the pressure head (cm),  (1/cm) and   are empirical coefficients (which are 348 

related to the air-entry value and the pore-size distribution index, respectively), and  349 

is the saturated hydraulic conductivity. 350 

As none of the soil moisture stations includes meteorological measurements, we 351 

used data from a nearby meteorological station (11 km away from the scrubland soil 352 

moisture station) as climate forcing for all simulations. The potential evapotranspiration 353 

was calculated by the Penman-Monteith equation within Hydrus-1D. The soil profile 354 

was discretized into six materials (five soil layers matching the observations within 0-355 

0.7 m plus a soil layer extended from 0.7-2 m with the same soil properties as layer 5). 356 

The lower boundary condition of HYDRUS-1D was set to free drainage since the soil 357 

overlays a fractured rock system (Yao et al., 2017). The Feddes model was used for root 358 

water uptake simulations (Feddes, 1978), and the vertical root distribution was 359 

parameterized based on an empirical root distribution (Hoffman and van Genuchten, 360 

1983) and the measured rooting depth (Simunek et al., 2005). The interception constant 361 

for specific land covers were obtained by dividing the daily interception thresholds by 362 



    

the LAI (Wang et al., 2018). The interception thresholds were obtained from the results 363 

of literature values reported for the Qilian Mountains (Liu et al., 2012; Liu et al., 2013). 364 

Both soil properties and crop parameters did not change during the simulation. 365 

In the simulation of scenario (1), HYDRUS was applied to simulate the soil 366 

moisture dynamics of the eight soil moisture stations using the measured soil properties 367 

of each station, and using the same crop parameters (for scrubland). For scenario (2), 368 

HYDRUS was applied to simulate soil moisture for five land cover types with their 369 

respective crop parameters using the same soil properties (soil of scrubland). Smax and 370 

Duration were calculated from the simulated soil moisture to show the applicability of 371 

the indices. The soil properties and crop parameters used in the simulations are shown 372 

in the supplemental material (Tables A1 and A2). 373 

2.8. Statistical analysis 374 

Descriptive statistics (maximum, minimum, mean and coefficient of variation (CV)) 375 

were computed for all indices and the effect of different land covers on the indices were 376 

tested using a one way analysis of variance (ANOVA) ( .05). Least Significant 377 

Difference (LSD) was used as a post-hoc-test for multiple comparisons of means 378 

. Box-plots were used to display the distribution of index values between 379 

different layers and land covers (McGill et al., 1978), and when notches do not overlap, 380 

the medians can be judged to differ significantly (Muenchen, 2011; Krzywinski and 381 

Altman, 2014). The statistical analysis was conducted using the SPSS statistical 382 



    

package (SPSS 18.0, SPSS Inc., Chicago, USA) and MATLAB (MathWorks, Inc., 383 

Massachusetts, USA). 384 

3. Results 385 

The discriminated soil wetting events at each measurement location during the 386 

growing season of 2014 - 2016 are summarized in Table 2. Overall, we found 1,783 387 

events, of which 48 % occurred in the first soil layer and 24 % occurred in the second 388 

layer. As there is only one soil moisture station each for the scrubland and meadow and 389 

there are two stations for each of the other three land covers, the soil wetting events at 390 

each station were aggregated within the same land cover to analyze the patterns of soil 391 

wetting events under different land covers in the study area. We analyzed the soil 392 

wetting events with the indices described earlier, and this analysis is summarized in 393 

Table 3. 394 

3.1. Profile distribution of the increment of soil wetting event (ASWI) under different 395 

land covers 396 

Fig. 5 and Fig. 6 show the box-plots of the derived ASWI and RSWI values for the 397 

specific soil depths and land cover types, respectively. Generally, ASWI decreased with 398 

depth and RSWI is below 100% in most cases, which suggests a decreasing soil 399 

moisture response with increasing soil depth. Furthermore, the RSWI increased with 400 

depth in most cases, suggesting that the dampening effect also reduced with depth. The 401 



    

box plots of ASWI and RSWI show different reduction patterns along depth for 402 

different land covers (Fig. 5 and Fig. 6). 403 

The scrubland shows a similar degree of soil moisture increase along the soil profile, 404 

only with a significantly decrease of ASWI at layer 3 (p<0.05), which may be related 405 

to the lower KS of layer 3 (Fig. 3). At the same time, the scrubland has the highest RSWI 406 

along the soil profile amongst all land covers, with a median higher than 50% for layers 407 

2 and 3, and a median above 100% for layers 4 and 5. Moreover, the scrubland also 408 

shows the highest number of soil wetting events in the deeper layers (Table 2), 409 

indicating that soil covered by the scrubland exhibits a less dampened soil moisture 410 

response. This is attributed to the well-developed root system, which is associated with 411 

better conditions for infiltration (Fig. 3) (He et al., 2012; Tian et al., 2017). 412 

The soil moisture measurements for the meadow show a decline of ASWI from 413 

layer 1 (with a median of 4.3 vol. %) to layer 2 (with a median of 1.1 vol. %), which is 414 

significant at p<0.001, with the corresponding lowest RSWI (with a median of 17%) at 415 

layer 2. This also led to higher soil water contents in layer 1 (Fig. 2). The high RSWI 416 

at layer 5 (with median of 77%) can be partly affected by the accumulation of lateral 417 

flow from the upslope, as this soil moisture station is located at the bottom of a slope. 418 

These findings indicate that the meadow stations show a significantly higher degree of 419 

soil moisture response from layer 1 to layer 2, while there are no significant differences 420 

from layer 2 to layer 5. 421 



    

The High coverage grassland (HCG) and Medium coverage grassland (MCG) also 422 

show a significantly different degree of response along depth, while the barren land has 423 

a similar degree of response along depth. The HCG has a lower RSWI than the MCG 424 

in the shallow soil layers (median of 26% versus 61% at layer 2), while the HCG has a 425 

higher RSWI for the deep soil layers than the MCG (median of 57% and 41% of layer 426 

5 for the HCG and MCG, respectively). In addition, the extreme values of ASWI are 427 

more frequent along the profile for the HCG than the MCG and barren land. This 428 

indicates that the grassland stations with more vigorous vegetation consume more water 429 

in the shallow soil layers, and have a better capacity to transfer water into deeper soil 430 

layers. 431 

Overall, the results of the multiple comparisons show a similar degree of soil 432 

moisture response along depth for the scrubland (p>0.01) and barren land (p>0.05), 433 

suggesting a slightly dampened pattern of response amplitude for these two land covers. 434 

In contrast, the meadow, HCG and MCG stations show a heavily dampened soil 435 

moisture response amplitude with depth (p<0.01), which is strongest for the meadow 436 

station. 437 

3.2. Profile distribution of the rate of soil wetting (Smax, Smean) for different land covers 438 

In Fig. 7, both the maximum and mean rates (Smax and Smean) of the five soil layers 439 

are shown for all five land covers. As the rates vary in a wide range, box plots of Smax 440 

and Smean are shown with a logarithmic axis. Results of Welch’s ANOVA showed an 441 



    

overall significant reduction (p<0.01) of rate with depth for all the land covers. The 442 

maximum and mean rates of soil moisture increase showed a similar variation with 443 

depth under the same land cover. 444 

The scrubland showed the highest rate for the deep soil layers (with a median of 0.5 445 

of Smax at layer 5, supposing a variation of 0.15 vol. % in 30 min at layer 5). This is 446 

attributed to the fact that the scrubland has more macropores and higher KS (Fig. 2). 447 

The meadow showed the strongest reduction in rate from layer 1 (with a median of 4.86, 448 

Smax) to layer 2 (with a median of 1.2, Smax), similar to the variation of response degree.  449 

The HCG showed a significant higher rate at layer 1 (median of 2.4, matching a 450 

variation of 0.72 vol. % in 30 min, Smax), followed by a stably lower range of rates from 451 

layer 2 to layer 5 (median varied from 0.14 to 0.78, Smax). Unlike the degree of soil 452 

moisture response (ASWI), the rate of soil moisture increase showed a significant 453 

reduction from layer 1 to layer 3 for the MCG and barren land. This indicates that the 454 

MCG and barren land have a similar response amplitude but a different response rate 455 

along depth. Similar to ASWI, the extreme values of the rate are more frequent along 456 

the profile for the scrubland and HCG than for the MCG and barren land, corresponding 457 

to the increasing vegetation degradation (Fig. 7). 458 



    

3.3. Profile distribution of temporal pattern of soil wetting event under different land 459 

covers 460 

The temporal patterns of the soil wetting process at a specific layer along the profile 461 

are presented as the vertical variation of the response time and the duration of the 462 

wetting process in Fig. 8, Fig. 9 and Table 3. 463 

3.3.1 Profile distribution of the response time under different land covers 464 

The results presented in Fig. 8 show that the differences in the response time (DRT) 465 

ranged from negative values (indicating preferential flow; Wiekenkamp et al., 2016; 466 

Lin and Zhou, 2008) to as large as 270 hours in the barren land. The vertical distribution 467 

of DRT for different land covers is different to that of ASWI and rate (Fig. 8). The 468 

average DRT for each land cover increased in the order of scrubland (with a median 469 

value for the whole profile of 0.5 hours), meadow (2 hours), HCG (4 hours), MCG (7.5 470 

hours), and barren land (16.5 hours), again corresponding to the degree of vegetation 471 

degradation in the study area (Fig. 8). The DRT increased significantly with depth for 472 

all the land covers except the HCG (Fig. 8).  473 

The negative DRT along the profile in combination with the high RSWI (around 474 

100%) and the relatively high rate of soil moisture increase along the profile indicates 475 

that the scrubland is influenced by preferential flow along the profile through biological 476 

macropores (worm holes or root remnants, with a range of rooting depth>70 cm). In the 477 

soil profiles under meadow, bypass flow was not observed between layer 1 and 2 (as 478 

the DRT2 is larger than 0 hour), possibly due to the presence of the “mattic” epipedon. 479 



    

For MCG, bypass flow is more frequent between layers 1 and 2, and this occurrence of 480 

bypass flow coincides with the observed range of rooting depth (within 25 cm according 481 

to the field survey, Tian et al., 2017). Bypass flow was still observed for layer 4 under 482 

HCG, which also coincides with the observed range of rooting depth (within 40 cm). In 483 

contrast, bypass flow was not observed under barren conditions (with a minimum DRT 484 

of 0.5 hours for layer 2, Fig. 8). 485 

3.3.2 Profile distribution of the duration of soil wetting process under different land 486 

covers 487 

The vertical pattern of duration showed a wide range of time scales for the soil 488 

wetting events under different land covers, and it varied from a median value of 6.5 489 

hours to 170 hours (Fig. 9). The scrubland showed relatively homogenous soil wetting 490 

duration along the soil profile with a median value of 6.5 hours in the first two layers 491 

and around 14 hours in layers 3 to 5. In contrast, the wetting duration of the meadow 492 

soil profile is non-uniform, ranging from 3.5 hours (median) in the first layer to more 493 

than 40 hours (median) in the deeper soil layers. For HCG, the wetting duration 494 

extended from 8 hours to 46 hours (median value) with increasing depth. This pattern 495 

was also found for MCG and barren land, and was even more pronounced with about 496 

10 hours (median) in the first layer to a long time scale of over 130 hours (5 days, 497 

median) in the deep layers (Fig. 9).  498 

In summary, our results indicate that the duration of soil wetting events in the Qilian 499 

Mountain region can last from a few hours to several weeks depending on land cover, 500 



    

soil depth and soil properties. Also, the amplitude, rate and DRT of the soil wetting 501 

events varied with land cover types, soil depth and soil properties. 502 

3.4. Profile distribution of the accumulated soil wetting events under different land 503 

covers 504 

From the proportion of ASSI (Fig. 10 (c)), we can see that the first layer showed 505 

the highest proportion along the profile for all the land covers. The highest value of 80% 506 

was found for the meadow, the lowest value of 30% for the scrubland, and 50-65% for 507 

the other land covers. The results also show that the scrubland has a relatively even 508 

distribution pattern of the proportion of ASSI with depth, while the accumulated 509 

proportion of ASSI in the upper soil layers increased from HCG (with an accumulated 510 

proportion of 82% at layer 3), MCG (87%) to barren land (95%). These results indicate 511 

that the active soil depth involved in the infiltration processes decreased with vegetation 512 

degradation in the study area, except for the meadow. 513 

This can also be seen from the number of soil wetting events. The scrubland showed 514 

a stable reduction of the number of soil wetting events with depth, while the barren land 515 

showed a high proportion (more than 65%) of soil wetting events in layer 1. The 516 

meadow, HCG, and MCG had a percentage of nearly 50% of the soil wetting events 517 

recorded at layer 1 (Fig. 10 (d)). At the deepest layer, the percentage of the recorded 518 

soil wetting events decreased in the following order: scrubland (11.4%), HCG (5.8%), 519 

meadow (2.9%), MCG (2%), and barren land (1.6%), corresponding to the decrease of 520 



    

the rooting depth of the different land covers, suggesting that land covers with a deeper 521 

root zone have more soil moisture response events at deep layers. 522 

3.5. Simulation of the effect of land cover on soil wetting events 523 

Based on the results above, the profile pattern of soil wetting events (increment, 524 

rate, DRT and duration) was influenced by different land covers. However, as stated 525 

above, the influence of land cover on soil wetting events can be the combined effect of 526 

both the different plant characteristics and soil properties that have developed in 527 

coevolution with vegetation, which cannot be distinguished from the observations only. 528 

Thus, the individual roles of plant characteristics and soil properties in regulating the 529 

soil wetting events were further explored through the sensitivity analysis using 530 

HYDRUS-1D. 531 

3.4.1 Model validation 532 

A comparison of the measured and simulated soil moisture for the scrubland is used 533 

to validate the simulation results (Figs. A1 and A2 in Supplementary material). We only 534 

validated for scrubland as this station is relatively close to a meteorological station (11 535 

km), while the distance between meteorological stations and the other soil moisture 536 

stations is much greater. Given the strong variability of precipitation in this 537 

mountainous area, the validation for other stations was deemed to be unreliable. The 538 

correlation coefficient and RMSE for layer 1 (0.65, 0.048), layer 2 (0.67 and 0.045), 539 

layer 3 (0.67 and 0.069), layer 4 (0.81 and 0.029) and layer 5 (0.89 and 0.031) indicate 540 



    

a relatively good fit. Although there is bias between the measured and simulated soil 541 

moisture, the HYDRUS-1D model was able to simulate the soil moisture trends 542 

reasonably well. An important reason for the remaining difference is the still 543 

considerable distance between the meteorological and the soil moisture station (11 km). 544 

A further explanation for the remaining deviations could be related to the strong 545 

heterogeneity of soil hydraulic properties under scrubland (Rossi et al., 2018). 546 

To further validate the simulation results, the profile distribution of soil wetting 547 

events (SWE) for the observed and simulated time series were also compared. Fig. A2 548 

shows that both the profile distribution of the proportion of SWI and ASSI were higher 549 

for the simulations (45%, proportion of SWE number at layer 1) than for the 550 

observations (31.3%) in the surface layer, and lower for the simulations (6% at layer 5) 551 

than for the observations (11%) in deeper layers. Similarly, the comparison of the 552 

pattern of SWE also showed a higher Smax and Smean for the simulations than for the 553 

observations at the surface layer, while Smax and Smean for the simulations were again 554 

lower than the observations in the deeper layers. The profile distribution of Duration 555 

was similar to Smax (Fig. A2). 556 

In summary, a higher amount of soil wetting events with a higher velocity of the 557 

observed soil wetting process was found in the observed time series. These results 558 

indicate that the model underestimates the water transferability especially at greater 559 

depths. This could be attributed to the influence of preferential flow, which was 560 

observed at deeper depths (from DRT at layer 5, Fig. 8) but not explicitly accounted for 561 



    

in the HYDRUS1D simulations. Despite this shortcoming, the general characteristics 562 

of the soil wetting dynamics are reasonably reproduced by the model and thus can be 563 

used for sensitivity analyses. 564 

3.4.2 Sensitivity analysis 565 

The result of the sensitivity study using HYDRUS-1D simulations for the two 566 

scenarios is presented in Figs. 11 and 12 (the simulated time series of the two scenarios 567 

are shown in Figs. A3 and A4 in the Appendix). For scenario (1) with the influence of 568 

different profile soil properties (Fig. 11), the indices showed different profile patterns 569 

in both Duration and Smax. Smax decreased with depth in different ways for all model 570 

runs except the barren land, while the Duration increased with depth in different ways 571 

except for the barren land. For the barren land, the increase of Smax at layer 4 is attributed 572 

to the increase of KS from layer 3 (0.4 cm/hour) to layer 4 (1.7 cm/hour). The different 573 

profile distribution of Smax and Duration reflect the control of soil properties on soil 574 

water dynamics, which varied considerably between each soil profile (Table A1).  575 

For scenario (2) with the influence of different crop parameters (Fig. 12), both Smax 576 

and Duration showed a similar variation with depth for different land covers. Despite 577 

the different plant parameters for each land cover types, Smax decreased and Duration 578 

increased with depth for all land cover types. Furthermore, Smax at deeper depths 579 

decreased for several vegetation types at layer 5: scrubland (with a median value of 0.4), 580 

HCG (0.22), MCG (0.2) and meadow (0.17). Apparently, the value of Smax at layer 5 581 



    

seems to be related to the rooting depth (Table A2), i.e. with decreasing rooting depth, 582 

the value of Smax for layer 5 decreases.  583 

In summary, soil profiles with different soil hydraulic properties (e.g. KS, soil 584 

hydraulic properties) and the same plant parameters had different profile patterns of soil 585 

wetting events (Fig. 11). However, the profiles with different plant parameters and the 586 

same soil hydraulic properties showed similar profile patterns of soil wetting events 587 

(Fig. 12). Thus, the results of this sensitivity analysis using HYDRUS-1D show that 588 

soil hydraulic properties are key factors in regulating the profile patterns of soil wetting 589 

events. 590 

4. Discussion 591 

4.1. Response patterns of soil moisture dynamics under different land covers 592 

Vegetation has been reported to alter soil hydrological processes, e.g. the 593 

propagation of wetting fronts through soil profiles (Laio et al., 2001). In our study, we 594 

investigated hydrological processes using long-term measurements of profile soil 595 

moisture response during rainfall infiltration under different land covers based on a set 596 

of indices (ASWI, RSWI, Smax, Smean, DRT, and Duration) that may also be useful for 597 

parameterization and validation of process-based soil hydrological models. 598 

Scrubland has been argued to enhance infiltration capacity (Li et al., 2009; Sun et 599 

al., 2015; Jin et al., 2018) or reduce infiltration capacity in soil profile (more root water 600 

uptake and interception for scrubland than grassland, especially in the (semi-) arid area, 601 



    

Wang et al., 2008; Li et al., 2013a; Lozano-Parra et al., 2015; Yu et al., 2017) through 602 

complex interactions between the well-developed root system and soil water (Moran et 603 

al., 2010). In our study, both the highest RSWI along the soil profile and the highest 604 

rate in the deep soil layers were observed under scrubland (Figs. 6 and 7). This indicates 605 

that scrubland soil exhibited a more intensive soil moisture response, both in terms of 606 

degree and rate, especially at deeper depths. In addition, the high value of the ASSI 607 

index (Fig. 10) indicates that scrubland soil exhibited higher infiltration capacity. On 608 

the other hand, the distribution of negative DRT revealed the frequent occurrence of 609 

preferential flow (Lin and Zhou, 2008; Wiekenkamp et al., 2016) in scrubland soils. 610 

This is attributed to the well-developed root system of scrubland, which is associated 611 

with both better soil hydraulic conditions (Fig. 3) for infiltration (He et al., 2012; Tian 612 

et al., 2017) and formation of macropores that facilitate preferential flow (Li et al., 2009; 613 

Jin et al., 2018). Thus, in the hydrological modelling for scrubland, the effect of 614 

preferential flow needs to be considered to best represent the hydrological processes of 615 

scrubland. 616 

The ‘mattic’ diagnostic epipedon typically found at soil depths of 0-10 cm in alpine 617 

meadow soils of the Tibet plateau is formed by abundant roots and their long-term 618 

interaction with the soil (Zeng et al., 2013; Zhi et al., 2017). We found that this layer 619 

can significantly reduce the soil hydraulic conductivity (Fig. 3) and the soil moisture 620 

response (e.g. ASWI and Smax from layer 1 to layer 2, Figs 5 and 7), which was also 621 

suggested in other studies (Wang et al., 2007; Tian et al., 2017). Accordingly, a scheme 622 



    

of “two soil layers with a low soil hydraulic properties for the ‘mattic’ epidedon layer 623 

and a high one for the deeper soil layer” was recommended in the soil hydraulic 624 

parameterization of hydrological modelling under meadow. This result is also 625 

consistent with experiences from hydrological model parameterization for Alpine 626 

meadow soils (Della Chiesa et al., 2014). 627 

The profile response patterns suggest that land covers with a deeper root zone 628 

exhibit more soil moisture response events at deep layers in the study area. This result 629 

coincides with other relevant studies in the Tibet plateau (Sun et al., 2015; Yang et al., 630 

2017). Thus, rooting depth is an essential control on the transfer of rainfall infiltration 631 

into deeper layers of Tibet plateau soils.  632 

The profile distribution of Duration of the soil moisture increases indicated that 633 

there is an accumulation of soil moisture in the deep layers under MCG and barren land, 634 

which was also observed by Sun et al. (2015) and Yang et al. (2017) for grassland in 635 

the Qilian Mountains. The accumulation of soil moisture in deep layers was probably 636 

related to the combined effects of the continuous rainfall pattern in the study area (Sun 637 

et al., 2015; He et al., 2012; Yang et al., 2017) and the lower KS of the deeper soil layers 638 

(as shown in Fig. 3) that reduces downward flow (Sun et al., 2015). In addition, the 639 

deeper soil layers are not penetrated by roots and thus are less affected by 640 

evapotranspiration processes (He et al., 2013; Wang et al., 2015; Broedel et al., 2017). 641 



    

4.2. Assessing the quantitative indices for the soil wetting event pattern 642 

There are many studies dealing with the response of soil moisture to rainfall. 643 

However, most studies are based on a qualitative description through visual inspection 644 

of time series of soil moisture (Kim et al., 2009; He et al., 2012; Li et al., 2013a; Yu et 645 

al., 2015). For instance, Yu et al. (2015) and Kim et al. (2009) suggested the existence 646 

of an “inconsistent impulse type” of soil moisture response to rainfall. In this study, we 647 

evaluated several indices based on the amplitude, rate (Smax, Smean) and timing of 648 

response to characterize how the profile soil moisture response responds to rainfall 649 

using 3-year time series of soil moisture under different land covers. 650 

The distribution of Smax from the soils investigated in this study was consistent with 651 

results of Lozano-Parra et al. (2016) found in the region of Extremadura, Spain. 652 

However, our station showed somewhat lower values for Smax, which may be caused by 653 

the higher hydraulic conductivity of the sandy loam soil at the Spanish site (Lozano-654 

Parra et al., 2016). Our Smean pattern also matched well with the results of Sun et al. 655 

(2015) and Yang et al. (2017) in a small watershed within the Qilian Mountains based 656 

on typical soil wetting events, indicating the validity of our results. However, our study 657 

relies on the observed general patterns of soil wetting events for five different land 658 

covers from longer soil moisture records (3 years) at multiple stations. 659 

DRT has been used for the identification of preferential flow (Wiekenkamp et al., 660 

2016). It increased significantly with depth for all land covers except HCG in this study. 661 

This indicates that the velocity of the wetting front reduced significantly as the 662 



    

infiltration front propagated deeper into the soil (Green and Erskine, 2011; Yang et al., 663 

2017; Hardie et al., 2013). However, the occurrence of preferential flow might be 664 

underestimated in this study due to the relatively long measurement interval of 30 min. 665 

Previous studies have shown that preferential flow may occur on time scales shorter 666 

than 30 min (Lin and Zhou, 2008; Graham and Lin, 2011). 667 

4.3. Virtual simulation of soil wetting events with HYDRUS-1D 668 

In order to explore the individual roles of plant parameters and soil properties in 669 

controlling the soil wetting events, which can’t be obtained from data analysis only, the 670 

sensitivity analysis with two scenarios were conducted through HYDRUS-1D. Through 671 

the comparison of the soil wetting patterns for two simulation scenarios, we found 672 

similar response patterns of profile soil moisture for different plant parameters and the 673 

same soil (Fig. A4 and Fig. 12), while we found different response patterns when soil 674 

properties were varied for the same land cover (Fig. A3 and Fig. 11). Thus, we conclude 675 

that soil properties are a key factor for the regulation of the profile pattern of soil 676 

moisture dynamics rather than the plant parameters. The importance of soil properties 677 

in controlling soil moisture dynamics was also reported in other studies based on 678 

hydrological modelling (Bertoldi et al., 2014; Shi et al., 2015). In addition, our virtual 679 

experimental analysis illustrated that the indices used in our study are suitable to 680 

quantitatively describe and distinguish the patterns of soil moisture dynamics. 681 



    

However, land cover may not have been characterized sufficiently in terms of 682 

physiological properties in the soil hydrological modelling in this study. For instance, 683 

we used the same values for the physiological parameters of the root water uptake 684 

model for all land cover types due to the lack of more detailed information for the 685 

vegetation in the study area. Furthermore, the vertical root distribution was 686 

parameterized using a general root distribution function in HYDRUS-1D (Hoffman and 687 

van Genuchten, 1983) due to the lack of measured root density profiles. Additionally, 688 

crop parameters were kept unchanged during the simulation of HYDRUS (including 689 

LAI, rooting depth and crop height). Due to this generalization, the effect of different 690 

vegetation types on the soil moisture response to evapotranspiration may have been 691 

underestimated. 692 

Topographic factors have been recognized as an important factor in regulating soil 693 

moisture dynamics in Qilian Mountainous area (Zhao et al., 2014). In this study, stations 694 

with only mild slopes were selected to reduce such topography effects. However, the 695 

influence of topography should be investigated in future studies using detailed slope 696 

information, in situ observations and 2D or 3D hydrological simulations. 697 

5. Conclusions 698 

Based on a 3-year long dataset obtained from a large-scale soil moisture monitoring 699 

network in the upper reach of the Heihe River Watershed, we quantitatively analyzed 700 



    

the patterns of the profile soil moisture dynamic response for different land covers from 701 

its response amplitude, response rate and time. The main findings are:  702 

(1) The scrubland, MCG and barren land have a slightly dampened soil moisture 703 

response amplitude along the soil profile, while the meadow and HCG have a heavily 704 

dampened response amplitude. The rate of soil moisture increases reduced significantly 705 

with depth for all the land covers, except for the HCG. 706 

(2) The different land covers have significantly different temporal patterns of the 707 

profile soil moisture dynamics response. The vertical variation of transmit time for the 708 

wetting front advancing through the adjacent layers coincides with the extent of the root 709 

zone for the different land covers. In addition, soil wetting events can last from hours 710 

to weeks for different soil layers of different land covers.  711 

(3) Preferential flow occurred mostly in soils covered by scrubland. 712 

(4) Overall, scrubland has an evenly distributed soil moisture retention capacity 713 

along the profile, whereas the major soil moisture retention capacity is concentrated in 714 

the top soil for other land covers, especially the meadow. The water transferability was 715 

found to be higher in deeply rooted soil. 716 

(5) After separating the influence of plant parameters and soil properties on profile 717 

patterns of soil wetting events, soil hydraulic properties was found to be the key factors 718 

explaining the observed differences in soil moisture responses. 719 

The indices used in this study can be used to quantitatively describe the patterns of 720 

profile soil moisture dynamics for different land covers, and to provide new insights 721 



    

into the different soil hydrological regimes under different land covers. They can also 722 

supply important information for effective model parameterization and validation, and 723 

thus improving ecohydrological modelling studies in data-scarce mountainous 724 

watersheds. 725 

ACKNOWLEDGEMENTS 726 

The project is partially funded by the National Natural Science Foundation of China 727 

(41530752, 91125010, and 51609111), the Strategic Priority Research Program of 728 

Chinese Academy of Sciences (XDA20100102). We are grateful to the members of the 729 

Center for Dryland Water Resources Research and Watershed Science, Lanzhou 730 

University for their hard field work to collect the soil moisture data and maintain the 731 

stations in this high, cold, and hard to access mountainous area. Without their hard work, 732 

the soil moisture data presented in this paper would not have been available. We also 733 

thank the Science Data Center for Cold and Arid Regions (http://westdc.westgis.ac.cn) 734 

for providing the supported data. We are grateful to the two anonymous reviewers and 735 

the editors for their constructive comments and suggestions on this manuscript.  736 

REFERENCES 737 

Bertoldi, G., Della Chiesa, S., Notarnicola, C., Pasolli, L., Niedrist, G., Tappeiner, U., 738 

2014. Estimation of soil moisture patterns in mountain grasslands by means of SAR 739 

RADARSAT2 images andhydrological modeling. J. Hydrol. 516, 245-257. 740 

Blume, T., Zehe, E., Bronstert, A., 2009. Use of soil moisture dynamics and patterns at 741 

different spatio-temporal scales for the investigation of subsurface flow processes. 742 

Hydrol. Earth Syst. Sci. 13 (7), 1215-1233. 743 



    

Brocca, L., Melone, F., Moramarco, T., Morbidelli, R., 2010. Spatial temporal 744 

variability of soil moisture and its estimation across scales. Water Resour. Res. 46 745 

(2). 746 

Brocca, L., Zucco, G., Mittelbach, H., Moramarco, T., Seneviratne, S., 2014. Absolute 747 

versus temporal anomaly and percent of saturation soil moisture spatial variability 748 

for six networks worldwide. Water Resour. Res. 50 (7), 5560-5576. 749 

Broedel, E., Tomasella, J., Cândido, L.A., Randow, C.V., 2017. Deep soil water 750 

dynamics in an undisturbed primary forest in central Amazonia: differences 751 

between normal years and the 2005 drought. Hydrol. Process. 31 (9), 1749-1759. 752 

Brooks, P.D., Chorover, J., Fan, Y., Godsey, S.E., Maxwell, R.M., McNamara, J.P., 753 

Tague, C., 2015. Hydrological partitioning in the critical zone: Recent advances 754 

and opportunities for developing transferable understanding of water cycle 755 

dynamics. Water Resour. Res. 51 (9), 6973-6987. 756 

Chen, R.S., Song, Y., Kang, E., Han, C., Liu, J., Yang, Y., Qing, W., Liu, Z., 2014a. A 757 

cryosphere-hydrology observation system in a small alpine watershed in the Qilian 758 

Mountains of China and its meteorological gradient. Arct. Antarct. Alp. Res. 46 (2), 759 

505-523. 760 

Chen, R.S., Yang, Y., Han, C., Liu, J., Kang, E., Song, Y., Liu, Z., 2014b. Field 761 

experimental research on hydrological function over several typical underlying 762 

surfaces in the cold regions of Western China. Adv. Earth Sci. 29 (4), 507-514 (in 763 

chinese). 764 

Chen, Y.N., Li, W.H., Deng, H.J., Fang, G.H., Li, Z., 2016. Changes in Central Asia’s 765 

Water Tower: Past, Present and Future. Sci. Rep. 6 (35458). 766 

Cheng, G.D., Li, X., Zhao, W., Xu, Z., Feng, Q., Xiao, S., Xiao, H., 2014. Integrated 767 

study of the water–ecosystem–economy in the Heihe River Basin. Natl. Sci. Rev. 1 768 

(3), 413-428. 769 

Clark, M.P., Bierkens, M.F., Samaniego, L., Woods, R.A., Uijlenhoet, R., Bennett, K.E., 770 

Pauwels, V., Cai, X., Wood, A.W., Peters-Lidard, C.D., 2017. The evolution of 771 



    

process-based hydrologic models: historical challenges and the collective quest for 772 

physical realism. Hydrol. Earth Syst. Sci. 21. 773 

Cobos, D.R., Chambers, C., 2010. Calibrating ECH2O soil moisture sensors. 774 

Application Note. Decagon Devices, Pullman, WA. 775 

Della Chiesa, S., Bertoldi, G., Niedrist, G., Obojes, N., Endrizzi, S., Albertson, J.D., 776 

Wohlfahrt, G., Hörtnagl, L., Tappeiner, U., 2014. Modelling changes in grassland 777 

hydrological cycling along an elevational gradient in the Alps. Ecohydrology 7 (6), 778 

1453-1473. 779 

Dorigo, W.A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., 780 

Drusch, M., Mecklenburg, S., Oevelen, P.V., 2011. The International Soil Moisture 781 

Network: a data hosting facility for global in situ soil moisture measurements. 782 

Hydrol. Earth Syst. Sci. 15 (5), 1675-1698. 783 

Dorigo, W., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiová, A., Sanchis-Dufau, A., 784 

Zamojski, D., Cordes, C., Wagner, W., Drusch, M.,2013. Global automated quality 785 

control of in situ soil moisture data from the International Soil Moisture Network. 786 

Vadose Zone J. 12 (3). 787 

Famiglietti, J.S., Ryu, D., Berg, A.A., Rodell, M., Jackson, T.J., 2008. Field 788 

observations of soil moisture variability across scales. Water Resour. Res. 44 (1). 789 

Farmer, D., Sivapalan, M., Jothityangkoon, C., 2003. Climate, soil, and vegetation 790 

controls upon the variability of water balance in temperate and semiarid landscapes: 791 

Downward approach to water balance analysis. Water Resour. Res. 39 (2). 792 

Farrick, K.K., Branfireun, B.A., 2014. Soil water storage, rainfall and runoff 793 

relationships in a tropical dry forest catchment. Water Resour. Res. 50 (12), 9236-794 

9250. 795 

Feddes, R.A., Kowalik, P.J., Zaradny, H., 1978. Simulation of field water use and crop 796 

yield. Wageningen : Centre for agricultural publishing and documentation. 797 



    

Feng, Q., Su, Y.H., Si, J.H., Chang, Z.Q., H, X., Guo, R., Chen, L.J., Huo, H., Qin, Y.Y., 798 

2013. Ecohydrological Transect Survey of Heihe River Basin. Adv. Earth Sci. 28 799 

(2), 10. 800 

Gasch, C., Brown, D., Campbell, C., Cobos, D., Brooks, E., Chahal, M., Poggio, M., 801 

2017. A Field Scale Sensor Network Data Set for Monitoring and Modeling the 802 

Spatial and Temporal Variation of Soil Water Content in a Dryland Agricultural 803 

Field. Water Resour. Res. 53 (12), 10878-10887. 804 

Germann, P., Hensel, D., 2006. Poiseuille flow geometry inferred from velocities of 805 

wetting fronts in soils. Vadose Zone J. 5 (3), 867-876. 806 

Graham, C.B., Lin, H.S., 2011. Controls and frequency of preferential flow occurrence: 807 

A 175-event analysis. Vadose Zone J. 10 (3), 816-831. 808 

Green, T.R., Erskine, R.H., 2011. Measurement and inference of profile soil water 809 

dynamics at different hillslope positions in a semiarid agricultural watershed. Water 810 

Resour. Res. 47 (12). 811 

Guo, L., Lin, H., 2018. Chapter Two - Addressing Two Bottlenecks to Advance the 812 

Understanding of Preferential Flow in Soils. In: D.L. Sparks (Editor), Advances in 813 

Agronomy. Academic Press, 61-117. 814 

Hardie, M., Lisson, S., Doyle, R., Cotching, W., 2013. Determining the frequency, depth 815 

and velocity of preferential flow by high frequency soil moisture monitoring. J. 816 

Contam. Hydrol. 144 (1), 66-77. 817 

He, C.S., Demarchi, C., , T.E.C., Feng, Q., Hunter, T., 2009. Hydrologic modeling 818 

of the Heihe watershed by DLBRM in Northwest China. Sci. Cold Arid. Reg. 1 (5), 819 

432-442. 820 

He, L., Ivanov, V.Y., Bohrer, G., Thomsen, J.E., Vogel, C.S., Moghaddam, M., 2013. 821 

Temporal dynamics of soil moisture in a northern temperate mixed successional 822 

forest after a prescribed intermediate disturbance. Agric. For. Meteorol. 180 (19), 823 

22–33. 824 



    

He, Z.B., Zhao, W.Z., Liu, H., Chang, X.X., 2012. The response of soil moisture to 825 

rainfall event size in subalpine grassland and meadows in a semi-arid mountain 826 

range: A case study in northwestern China’s Qilian Mountains. J. Hydrol. 420–421, 827 

183-190. 828 

Hoffman, G.J., Van Genuchten, M.T., 1983. Soil properties and efficient water use: 829 

Water namagement for salinity control, in: Limitations and Efficient Water Use in 830 

Crop Production. American Society Of Agrononmy, Madison, WI, 73-85. 831 

Immerzeel, W.W., Van Beek, L.P., Bierkens, M.F., 2010. Climate change will affect the 832 

Asian water towers. Science 328 (5984), 1382-1385. 833 

Jenny, H., 1994. Factors of soil formation: a system of quantitative pedology. Courier 834 

Corporation, Massachusetts, USA. 835 

Jian, S.Q., Zhao, C.Y., Fang, S.M., Yu, K., 2015. Effects of different vegetation 836 

restoration on soil water storage and water balance in the Chinese Loess Plateau. 837 

Agric. For. Meteorol. 206, 85-96. 838 

Jin, X., Zhang, L., Gu, J., Zhao, C., Tian, J., He, C., 2015. Modelling the impacts of 839 

spatial heterogeneity in soil hydraulic properties on hydrological process in the 840 

upper reach of the Heihe River in the Qilian Mountains, Northwest China. Hydrol. 841 

Process. 29 (15), 3318-3327. 842 

Jin, Z., Guo, L., Lin, H., Wang, Y., Yu, Y., Chu, G., Zhang, J., et al., 2018. Soil moisture 843 

response to rainfall on the Chinese Loess Plateau after a long-term vegetation 844 

rehabilitation. Hydrol. Process. 32 (12), 1738-1754. 845 

Jung, M. et al., 2010. Recent decline in the global land evapotranspiration trend due to 846 

limited moisture supply. Nature 467, 951. 847 

Kim, S., 2009. Characterization of soil moisture responses on a hillslope to sequential 848 

rainfall events during late autumn and spring. Water Resour. Res. 45 (9). 849 

Koster, R.D., Dirmeyer, P.A., Zhichang, G., Gordon, B., Edmond, C., Peter, C., Gordon, 850 

C.T., Shinjiro, K., Eva, K., David, L., 2004. Regions of strong coupling between 851 

soil moisture and precipitation. Science 305 (5687), 1138-1140. 852 



    

Krzywinski, M., Altman, N., 2014. Points of significance: visualizing samples with box 853 

plots. Nature Publishing Group, London, UK. 854 

Kurc, S.A., Small, E.E., 2004. Dynamics of evapotranspiration in semiarid grassland 855 

and shrubland ecosystems during the summer monsoon season, central New 856 

Mexico. Water Resour Res. 40 (9). 857 

Laio, F., Porporato, A., Ridolfi, L., Rodriguez-Iturbe, I., 2001. Plants in water-858 

controlled ecosystems: active role in hydrologic processes and response to water 859 

stress : II. Probabilistic soil moisture dynamics. Adv. Water Resour. 24 (7), 695-860 

705. 861 

Li, N., Wang, X.J., Shi, M.J., Yang, H., 2015a. Economic Impacts of Total Water Use 862 

Control in the Heihe River Basin in Northwestern China—An Integrated CGE-863 

BEM Modeling Approach. Sustainability 7 (3), 3460-3478. 864 

Li, Q., Zhu, Q., Zheng, J., Liao, K., Yang, G., 2015b. Soil Moisture Response to Rainfall 865 

in Forestland and Vegetable Plot in Taihu Lake Basin,China. Chin. Geog. Sci. 25 866 

(4), 426-437. 867 

Li, X., Cheng, G., Liu, S., Xiao, Q., Ma, M., Jin, R., Che, T., Liu, Q., Wang, W., Qi, Y., 868 

2013b. Heihe watershed allied telemetry experimental research (HiWATER): 869 

Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 94 (8), 870 

1145-1160. 871 

Li, X.Y., Yang, D.W., Zheng, C.M., Li, X.R., Zhao, W.Z., Huang, M.B., Chen, Y.N., Yu, 872 

P.T., 2017. Ecohydrology, The Geographical Sciences During 1986—2015: From 873 

the Classics To the Frontiers. Springer Singapore, Singapore, pp. 407-417. 874 

Li, X.Y., Yang, X.F., Ma, Y.J., Hu, G.R., Hu, X., Wu, X.C., Wang, P., Huang, Y.M., Cui, 875 

B.L., Wei, J.Q., 2018. Qinghai Lake Basin Critical Zone Observatory on the 876 

Qinghai-Tibet Plateau. Vadose Zone J. 17 (1). 877 

Li, X.Y., Zhang, S.Y., Peng, H.Y., Xia, H., Ma, Y.J., 2013a. Soil water and temperature 878 

dynamics in shrub-encroached grasslands and climatic implications: Results from 879 



    

Inner Mongolia steppe ecosystem of north China. Agric. For. Meteorol. 171 (8), 880 

20–30. 881 

Li, Z., Xu, Z., Shao, Q., Yang, J., 2009. Parameter estimation and uncertainty analysis 882 

of SWAT model in upper reaches of the Heihe river basin. Hydrol. Process. 23 (19), 883 

2744-2753. 884 

Liang, W.L., Kosugi, K.I., Mizuyama, T., 2011. Soil water dynamics around a tree on a 885 

hillslope with or without rainwater supplied by stemflow. Water Resour. Res. 47 886 

(2), 2144-2150. 887 

Lin, H., Zhou, X., 2008. Evidence of subsurface preferential flow using soil hydrologic 888 

monitoring in the Shale Hills catchment. Eur. J. Soil Sci. 59 (1), 34–49. 889 

Liniger, H., Weingartner, R., Grosjean, M., 1998. Mountains of the World: Water 890 

Towers for the 21st Century. University of Berne, Berne, Switzerland. 891 

Liu, H., Zhao, W., He, Z., Liu, J., 2015. Soil moisture dynamics across landscape types 892 

in an arid inland river basin of Northwest China. Hydrol. Process. 3328-3341. 893 

Liu, Y.Y., Peng, H.H., Meng, W.P., Bie, Q., Wang, Y., Zhao, C.Y., 2013. Artificial 894 

rainfall interception characteristics in alpine meadows under diferent grazing 895 

scenarios in the upper reach of Heihe River. J. Lanzhou Univ. Nat. Sci. 49 (6), 799-896 

806 (in Chinese). 897 

Liu, Z.W., Chen, R.S., Song, Y.X., Han, C.T., 2012. Characteristics of rainfall 898 

interception for four typical shrubs in Qilian Mountain. Acta Ecol. Sin. 32 (4), 899 

1337-1346 (in Chinese). 900 

Lozano-Parra, J., Schaik, N.L.M.B.V., Schnabel, S., Gómez-Gutiérrez, Á., 2016. Soil 901 

moisture dynamics at high temporal resolution in a semiarid mediterranean 902 

watershed with scattered tree cover. Hydrol. Process. 30 (8), 1155-1170. 903 

Lozano-Parra, J., Schnabel, S., Ceballos-Barbancho, A., 2015. The role of vegetation 904 

covers on soil wetting processes at rainfall event scale in scattered tree woodland 905 

of Mediterranean climate. J. Hydrol. 529, 951-961. 906 



    

Lutz, A.F., Immerzeel, W.W., Shrestha, A.B., Bierkens, M.F.P., 2014. Consistent 907 

increase in High Asia's runoff due to increasing glacier melt and precipitation. Nat. 908 

Clim. Change 4, 587-592. 909 

McColl, K.A., Alemohammad, S.H., Akbar, R., Konings, A.G., Yueh, S., Entekhabi, D., 910 

2017. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 911 

10 (2), 100-104. 912 

McDonnell, J.J., Beven, K., 2014. Debates—The future of hydrological sciences: A 913 

(common) path forward? A call to action aimed at understanding velocities, 914 

celerities and residence time distributions of the headwater hydrograph. Water 915 

Resour. Res. 50 (6), 5342-5350. 916 

McGill, R., Tukey, J.W., Larsen, W.A., 1978. Variations of Box Plots. Am. Stat. 32 (1), 917 

12-16. 918 

McKenzie, N., Coughlan, K., Cresswell, H., 2002. Soil physical measurement and 919 

interpretation for land evaluation, 5. Csiro Publishing, Victoria, Australia. 920 

McMillan, H.K., Srinivasan, M.S., 2015. Characteristics and controls of variability in 921 

soil moisture and groundwater in a headwater catchment. Hydrol. Earth Syst. Sci. 922 

19 (4), 1767-1786. 923 

Moran, M.S. et al., 2010. Hydrologic response to precipitation pulses under and 924 

between shrubs in the Chihuahuan Desert, Arizona. Water Resour. Res. 46 (10). 925 

Muenchen, R.A., 2011. R for SAS and SPSS users. Springer Science & Business Media, 926 

Germany. 927 

Ochsner, T.E. et al., 2013. State of the Art in Large-Scale Soil Moisture Monitoring. 928 

Soil Sci. Soc. Am. J. 77 (6), 1888-1919. 929 

Pan, Q.M., Tian, S.L., 2001. Water resources in the Heihe river basin. The Yellow River 930 

Water Conservency Press, Zheng Zhou, China. 931 

Pan, X.D., Li, X., Yang, K., He, J., Zhang, Y., Han, X., 2014. Comparison of 932 

downscaled precipitation data over a mountainous watershed: A case study in the 933 

Heihe River Basin. J. Hydrometeorol. 15 (4), 1560-1574. 934 



    

Pellet, C., Hauck, C., 2017. Monitoring soil moisture from middle to high elevation in 935 

Switzerland: set-up and first results from the SOMOMOUNT network. Hydrol. 936 

Earth Syst. Sci. 21 (6), 3199-3220. 937 

Quiring, S.M., Ford, T.W., Wang, J.K., Khong, A., Harris, E., Lindgren, T., Goldberg, 938 

D.W., Li, Z., 2016. The North American Soil Moisture Database: Development and 939 

Applications. Bull. Am. Meteorol. Soc. 97 (8), 1441-1459. 940 

Ran, Y.H., Li, X., Cheng, G.D., 2018. Climate warming over the past half century has 941 

led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. Cryosphere 942 

12 (2), 595-608. 943 

Reatto, A., da Silva, E.M., Bruand, A., Martins, E.S., Lima, J.E.F.W., 2008. Validity of 944 

the centrifuge method for determining the water retention properties of tropical 945 

soils. Soil Sci. Soc. Am. J. 72 (6), 1547-1553. 946 

Rosenbaum, U., Bogena, H., Herbst, M., Huisman, J., Peterson, T., Weuthen, A., 947 

Western, A., Vereecken, H., 2012. Seasonal and event dynamics of spatial soil 948 

moisture patterns at the small catchment scale. Water Resour. Res. 48 (10). 949 

Rossi, M.J., Ares, J.O., Jobbágy, E.G., Vivoni, E.R., Vervoort, R.W., Schreiner-McGraw, 950 

A.P., Saco, P.M., 2018. Vegetation and terrain drivers of infiltration depth along a 951 

semiarid hillslope. Sci. Total Environ. 644, 1399-1408. 952 

Saito, T., Fujimaki, H., Yasuda, H., Inosako, K., Inoue, M., 2013. Calibration of 953 

Temperature Effect on Dielectric Probes Using Time Series Field Data. Vadose 954 

Zone J. 12 (2). 955 

Saito, T., Fujimaki, H., Yasuda, H., Inoue, M., 2009. Empirical Temperature Calibration 956 

of Capacitance Probes to Measure Soil Water. Soil Sci. Soc. Am. J. 73 (6), 1931-957 

1937. 958 

Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, 959 

B., Teuling, A.J., 2010. Investigating soil moisture–climate interactions in a 960 

changing climate: a review. Earth Sci. Rev. 99 (3), 125-161. 961 



    

Shi, Y.N., Baldwin, D.C., Davis, K.J., Yu, X., Duffy, C.J., Lin, H., 2015. Simulating 962 

high-resolution soil moisture patterns in the Shale Hills watershed using a land 963 

surface hydrologic model. Hydrol. Process. 29 (21), 4624-4637. 964 

Simunek, J., Van Genuchten, M.T., Sejna, M., 2005. The HYDRUS-1D software 965 

package for simulating the one-dimensional movement of water, heat, and multiple 966 

solutes in variably-saturated media. Univ. Calif. - Riverside Res. Rep. 3, 1-240. 967 

Su, Z., Wen, J., Dente, L., van der Velde, R., Wang, L., Ma, Y., Yang, K., Hu, Z., 2011. 968 

The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature 969 

(Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model 970 

products. Hydrol. Earth Syst. Sci. 15 (7), 2303-2316. 971 

Sun, F.X., Lü, Y.H., Wang, J.L., Hu, J., Fu, B.J., 2015. Soil moisture dynamics of typical 972 

ecosystems in response to precipitation: A monitoring-based analysis of 973 

hydrological service in the Qilian Mountains. Catena 129 (1), 63-75. 974 

Thompson, S.E., Harman, C.J., Troch, P.A., Brooks, P.D., Sivapalan, M., 2011. Spatial 975 

scale dependence of ecohydrologically mediated water balance partitioning: A 976 

synthesis framework for catchment ecohydrology. Water Resour. Res. 47 (10). 977 

Tian, J., Zhang, B.Q., He, C.S., Yang, L.X., 2017. Variability in Soil Hydraulic 978 

Conductivity and Soil Hydrological Response Under Different Land Covers in the 979 

Mountainous Area of the Heihe River Watershed, Northwest China. Land Degrad. 980 

Dev. 28 (4), 1437-1449. 981 

Van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic 982 

conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44 (5), 892-898. 983 

Vereecken, H., Huisman, J.A., Franssen, H.J.H., Brüggemann, N., Bogena, H.R., Kollet, 984 

S., Javaux, M., Kruk, J.V.D., Vanderborght, J., 2015. Soil hydrology: Recent 985 

methodological advances, challenges, and perspectives. Water Resour. Res. 51 (4), 986 

2616-2633. 987 



    

Viviroli, D. et al., 2011. Climate change and mountain water resources: overview and 988 

recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 15 989 

(2), 471-504. 990 

Wang, G.X., Liu, G.S., Li, C.J., Yang, Y., 2012b. The variability of soil thermal and 991 

hydrological dynamics with vegetation cover in a permafrost region. Agric. For. 992 

Meteorol. 162–163, 44-57. 993 

Wang, G.X., Wang, Y.B., Li, Y.S., Cheng, H.Y., 2007. Influences of alpine ecosystem 994 

responses to climatic change on soil properties on the Qinghai–Tibet Plateau, China. 995 

Catena 70 (3), 506-514. 996 

Wang, H.L., Tetzlaff, D., Soulsby, C., 2018. Modelling the effects of land cover and 997 

climate change on soil water partitioning in a boreal headwater catchment. J. 998 

Hydrol. 558, 520-531. 999 

Wang, Q.F., Jin, H., Zhang, T., Cao, B., Peng, X., Wang, K., Xiao, X., Guo, H., Mu, C., 1000 

Li, L., 2017. Hydro-thermal processes and thermal offsets of peat soils in the active 1001 

layer in an alpine permafrost region, NE Qinghai-Tibet plateau. Global Planet. 1002 

Change 156, 1-12. 1003 

Wang, S., Fu, B., Gao, G., Zhou, J., Jiao, L., Liu, J., 2015. Linking the soil moisture 1004 

distribution pattern to dynamic processes along slope transects in the Loess Plateau, 1005 

China. Environ. Monit. Assess. 187 (12). 1006 

Wang, S., Fu, B.J., Gao, G.Y., Liu, Y., Zhou, J., 2013. Responses of soil moisture in 1007 

different land cover types to rainfall events in a re-vegetation catchment area of the 1008 

Loess Plateau, China. Catena 101, 122-128. 1009 

Wang, S., Fu, B.J., Gao, G.Y., Yao, X.L., Zhou, J., 2012a. Soil moisture and 1010 

evapotranspiration of different land cover types in the Loess Plateau, China. Hydrol. 1011 

Earth Syst. Sci. 16 (8), 2883-2892. 1012 

Wang, X.P., Cui, Y., Pan, Y.-X., Li, X.R., Yu, Z., Young, M.H., 2008. Effects of rainfall 1013 

characteristics on infiltration and redistribution patterns in revegetation-stabilized 1014 

desert ecosystems. J. Hydrol. 358 (1), 134-143. 1015 



    

Western, A.W., Zhou, S.L., Grayson, R.B., McMahon, T.A., Blöschl, G., Wilson, D.J., 1016 

2004. Spatial correlation of soil moisture in small catchments and its relationship 1017 

to dominant spatial hydrological processes. J. Hydrol. 286 (1), 113-134. 1018 

Wiekenkamp, I., Huisman, J.A., Bogena, H.R., Lin, H.S., Vereecken, H., 2016. Spatial 1019 

and temporal occurrence of preferential flow in a forested headwater catchment. J. 1020 

Hydrol. 534, 139-149. 1021 

Xiong, Z., Yan, X., 2013. Building a high-resolution regional climate model for the 1022 

Heihe River Basin and simulating precipitation over this region. Chin. Sci. Bull. 58 1023 

(36), 4670-4678. 1024 

Yang, D.W., Gao, B., Jiao, Y., Lei, H., Zhang, Y., Yang, H., Cong, Z., 2015. A distributed 1025 

scheme developed for eco-hydrological modeling in the upper Heihe River. Sci. 1026 

China: Earth Sci. 58 (1), 36-45. 1027 

Yang, J.J., He, Z.B., Du, J., Chen, L.F., Zhu, X., Lin, P.F., Li, J., 2017. Soil water 1028 

variability as a function of precipitation, temperature, and vegetation: a case study 1029 

in the semiarid mountain region of China. Environ. Earth Sci. 76 (5), 206. 1030 

Yang, K., Qin, J., Zhao, L., Chen, Y., Tang, W., Han, M., Chen, Z., Lv, N., Ding, B., 1031 

Wu, H., 2013. A multiscale soil moisture and freeze-thaw monitoring network on 1032 

the third pole. Bull. Am. Meteorol. Soc. 94 (12), 1907-1916. 1033 

Yao, Y.Y., Zheng, C., Andrews, C., Zheng, Y., Zhang, A., Liu, J., 2017. What Controls 1034 

the Partitioning between Baseflow and Mountain Block Recharge in the Qinghai1035 

Tibet Plateau? Geophys. Res. Lett. 44 (16), 8352-8358. 1036 

Yu, X.N., Huang, Y.M., Li, E.G., Li, X.Y., Guo, W.H., 2017. Effects of vegetation types 1037 

on soil water dynamics during vegetation restoration in the Mu Us Sandy Land, 1038 

northwestern China. J. Arid Land 9 (2), 188-199. 1039 

Yu, Y., Wei, W., Chen, L.D., Jia, F.Y., Yang, L., Zhang, H.D., Feng, T.J., 2015. 1040 

Responses of vertical soil moisture to rainfall pulses and land uses in a typical loess 1041 

hilly area, China. Solid Earth 6 (2), 595-608. 1042 



    

Zehe, E., Becker, R., Bárdossy, A., Plate, E., 2005. Uncertainty of simulated catchment 1043 

runoff response in the presence of threshold processes: Role of initial soil moisture 1044 

and precipitation. J. Hydrol. 315 (1), 183-202. 1045 

Zeng, C., Zhang, F., Wang, Q.J., Chen, Y.Y., Joswiak, D.R., 2013. Impact of alpine 1046 

meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau. 1047 

J. Hydrol. 478, 148-156. 1048 

Zhang, A.J., Liu, W.B., Yin, Z.L., Fu, G.B., Zheng, C.M., 2016. How Will Climate 1049 

Change Affect the Water Availability in the Heihe River Basin, Northwest China? 1050 

J. Hydrometeorol. 17 (5), 1517-1542. 1051 

Zhang, L.H., He, C.S., Bai, X., Zhu, Y., 2017b. Physically Based Adjustment Factors 1052 

for Precipitation Estimation in a Large Arid Mountainous Watershed, Northwest 1053 

China. J. Hydrol. Eng. 22 (11), 04017047. 1054 

Zhang, L.H., He, C.S., Zhang, M.M., 2017a. Multi-Scale Evaluation of the SMAP 1055 

Product Using Sparse In-Situ Network over a High Mountainous Watershed, 1056 

Northwest China. Remote Sens. 9 (11), 1111. 1057 

Zhang, X.Z., Xiong, Z., Zheng, J.Y., Ge, Q.S., 2018. High-resolution precipitation data 1058 

derived from dynamical downscaling using the WRF model for the Heihe River 1059 

Basin, northwest China. Theor. Appl. Climatol. 131 (3), 1249-1259. 1060 

Zhao, C. et al., 2014. Analysis of the relationships between the spatial variations of soil 1061 

moisture and the environmental factors in the upstream of the Heihe River 1062 

watershed. J. Lanzhou Univ. Nat. Sci. 50 (3), 338-347 (in chinese). 1063 

Zhi, J.J., Zhang, G., Yang, F., Yang, R., Liu, F., Song, X., Zhao, Y., Li, D., 2017. 1064 

Predicting mattic epipedons in the northeastern Qinghai-Tibetan Plateau using 1065 

Random Forest. Geoderma Regional 10, 1-10. 1066 

Zhou, J.H. et al., 2016. Alpine vegetation phenology dynamic over 16years and its 1067 

covariation with climate in a semi-arid region of China. Sci. Total Environ. 572, 1068 

119-128. 1069 



    

Zhu, Q., Nie, X., Zhou, X., Liao, K., Li, H., 2014. Soil moisture response to rainfall at 1070 

different topographic positions along a mixed land-use hillslope. Catena 119, 61-1071 

70. 1072 

  1073 



    

 1074 

 1075 
Fig. 1. Location of the study area and the distribution of the soil moisture stations (SMS) (a), and 1076 

the distribution of the selected SMS in this study, as well as the spatial distribution of the 1077 
precipitation (annual rainfall of 2014) (b). 1078 

  1079 



    

 1080 
Fig. 2. 0.5 hourly time series of soil moisture (SWC, vol. %) for scrubland (1 soil moisture station: 1081 
Scrub), meadow (1 station: Meadow), high coverage grassland (2 stations: HCG1, HCG2), medium 1082 
coverage grassland (2 stations: MCG1, MCG2) and barren land (2 stations: Baren1, Barren2) at soil 1083 
depths of 5, 15, 25, 40, 60 cm. Gaps exist due to missing data. Also shown are the rainfall data 1084 
(mm/d) and accumulated rainfall (mm) for each station. 1085 
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Fig. 4. Example of the identification of soil moisture increment event 
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 30 

Fig. 11. Box plots of indices of Smax (a), and Duration (b) calculated from the simulated soil moisture 31 
under the different soil properties with the same plant parameters to test the influence of soil property 32 
on the pattern of soil moisture dynamics. X axis is soil layer. 33 
  34 



    

 35 
Fig. 12. Box plots of indices of Smax (a), and Duration (b) calculated from the simulated soil moisture 36 
under the different land covers with the same soil hydraulic properties to test the influence of plant 37 
parameters on the pattern of soil moisture dynamics. X axis is soil layer. HCG, MCG and BL 38 
represent high coverage grassland, medium coverage grassland and barren land, respectively.39 
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Table 3. The descriptive statistics (Mean±STD) for the indices of specific layers under different land 45 

covers. 46 

Index  Shrub Meadow HCG MCG Barren land 

ASWI1  3.3±3.37 5.2±4.22 5.39±5.36 5.01±3.79 4.54±3.86 

ASWI2  2.72±2.65 1.64±1.48 3.61±3.81 4.33±3.58 4.91±3.17 

ASWI3  2±1.99 0.95±0.71 2.62±3.45 3.43±2.93 4.07±3.59 

ASWI4  2.65±2.72 0.86±0.54 2.9±5.16 3.61±3.38 3.35±2.58 

ASWI5  2.31±2.19 0.61±0.29 2.75±5.71 2.32±1.04 3.56±2.33 

RSWI2  80.28±49.47 19.08±9.93 30.72±23.52 68.26±31.27 46.78±16.77 

RSWI3  83.02±75.37 35.96±13.84 41.21±21.2 60.91±33.54 42.39±25.17 

RSWI4  127.93±85.65 44.49±30.75 65.74±41.29 61.49±32.55 49.7±13.39 

RSWI5  99.9±40.03 87.16±45.36 53.92±25.63 39.79±16.93 67.87±30.25 

Smax1  2.73±2.91 6.6±5.61 4.78±7.37 3.99±5.08 3.47±4.01 

Smax2  1.72±1.5 1.62±2.27 2.82±6.87 2.48±2.6 1.67±2.36 

Smax3  0.85±0.86 0.42±0.37 2.53±8.03 0.77±0.83 0.37±0.14 

Smax4  1.06±1.49 0.31±0.48 4.47±12 0.45±0.53 0.2±0.1 

Smax5  0.81±1.09 0.28±0.4 5.33±18.31 0.13±0.02 0.22±0.08 

Smean1  0.93±0.79 2.64±2.51 1.6±2.19 1.33±2.27 1.15±1.25 

Smean2  0.68±0.52 0.63±0.73 1.07±3.2 0.91±1.22 0.6±0.48 

Smean3  0.36±0.35 0.22±0.15 1.2±3.74 0.33±0.19 0.18±0.02 

Smean4  0.45±0.55 0.13±0.04 2.27±5.96 0.2±0.11 0.15±0.01 

Smean5  0.34±0.37 0.18±0.16 1.93±6.51 0.13±0.02 0.15±0.01 

DRT2  0.66±0.77 2.49±2.65 7.24±9.37 7.4±14.33 14.61±14.83 

DRT3  1.25±1.37 2.42±2.74 6.33±6.84 18±20.58 68.24±67.28 

DRT4  3.01±5 9.78±7.77 7.17±7.59 44.64±34.09 104.28±96.6 

DRT5  0.3±1.15 7.88±7.52 8.71±9.09 71.5±43.65 140±72.39 

Duration1  8.79±7.93 7.79±10.9 18.69±31.03 16.29±18.14 26.08±47.2 

Duration2  10.1±8.24 12.38±12.61 35.62±50.75 29.97±42.32 63.52±79.5 

Duration3  14.57±11.83 19.25±14.9 58.03±89.35 49.67±46.17 202.86±159.71 

Duration4  21.18±19.93 46.06±23.48 64.76±98.54 184.53±119.69 309.81±217.06 

Duration5  21.96±19.8 34.57±23.15 88.45±119.44 313.75±167.12 316.63±90.56 

Note: HCG and MCG represent high coverage grassland and medium coverage grassland, respectively. 47 
ASWI, RSWI, DRT, Smax and Smean represent the indexes of the increment of soil wetting event, ratio of 48 
ASWI between adjacent soil layers, difference of the soil moisture response time, maximum and mean 49 
slope of the soil wetting curve, respectively. The number of 1, 2, 3, 4 and 5 after specific indices 50 
represents layers 1, 2, 3, 4 and 5, respectively. HCG and MCG represent high coverage grassland and 51 
medium coverage grassland, respectively. 52 



Appendix:  1 

Table A1. Parameters of profile soil hydraulic properties of the different stations.  and  are the 2 

saturated and residual water content (cm3/cm3),  (1/cm), n,  and   are empirical coefficients fitted by 3 

Mualem-van Genuchten model. KS (cm/hour) is the saturated hydraulic conductivity. SOC is the soil 4 

organic carbon (g 100g-1). 5 

Station layer     KS SOC 

scrubland 

layer1 0.100 0.527 0.091 1.265 4.529 8.270 

layer2 0.094 0.496 0.070 1.297 3.806 8.250 

layer3 0.089 0.465 0.049 1.330 1.161 7.930 

layer4 0.076 0.550 0.023 1.633 4.857 - 

layer5 0.133 0.548 0.012 1.727 7.927 5.350 

meadow 

layer1 0.080 0.741 0.203 1.202 3.276 9.434 

layer2 0.079 0.441 0.378 1.193 9.847 12.058 

layer3 0.120 0.518 0.130 1.296 3.538 10.923 

layer4 0.020 0.431 0.137 1.164 2.075 3.828 

layer5 0.024 0.431 0.025 1.193 1.564 4.321 

HCG1 

layer1 0.100 0.538 0.041 1.284 1.218 7.148 

layer2 0.108 0.464 0.024 1.368 1.149 6.071 

layer3 0.140 0.502 0.025 1.413 3.558 5.494 

layer4 0.065 0.460 0.035 1.231 2.068 3.541 

layer5 0.088 0.514 0.054 1.236 3.042 2.927 

HCG2 

layer1 0.080 0.475 0.026 1.313 2.586 5.494 

layer2 0.110 0.496 0.033 1.367 2.480 6.322 

layer3 0.110 0.550 0.034 1.362 2.562 5.901 

layer4 0.136 0.490 0.024 1.432 0.735 7.425 

layer5 0.080 0.527 0.053 1.238 0.527 4.136 

MCG1 

layer1 0.040 0.526 0.079 1.197 2.282 0.891 

layer2 0.050 0.459 0.034 1.200 2.550 0.664 

layer3 0.080 0.461 0.126 1.201 4.905 0.349 

layer4 0.100 0.436 0.088 1.262 3.150 0.633 

layer5 0.070 0.353 0.017 1.211 0.117 - 

MCG2 

layer1 0.060 0.712 0.027 1.292 3.652 0.687 

layer2 0.090 0.579 0.019 1.339 1.067 0.876 

layer3 0.080 0.649 0.030 1.316 0.466 1.022 

layer4 0.110 0.649 0.016 1.383 3.265 1.039 

layer5 0.150 0.704 0.024 1.396 0.191 0.717 

6 



Continue Table A1. 7 

Station layer     Ks SOC 

BL1 

layer1 0.030 0.638 0.026 1.242 0.879 1.411 

layer2 0.050 0.595 0.030 1.252 0.411 0.950 

layer3 0.040 0.541 0.049 1.215 0.397 0.858 

layer4 0.042 0.402 0.407 1.143 1.682 0.716 

layer5 0.050 0.654 0.078 1.188 1.218 0.525 

BL2 

layer1 0.020 0.385 0.044 1.190 1.011 0.485 

layer2 0.035 0.381 0.091 1.214 1.728 0.449 

layer3 0.037 0.392 0.298 1.193 0.555 0.476 

layer4 0.001 0.421 0.041 1.222 0.205 0.872 

layer5 0.037 0.362 0.179 1.159 2.042 0.539 

Notes: HCG1 and HCG2 are the stations of high coverage grassland, MCG1 and MCG2 are the stations of medium 8 

coverage grassland, and BL1 and BL2 are the stations of barren land.  9 



Table A2. Crop parameters of different land covers for the simulation of scenario 2, according to the field 10 

survey. 11 

Crop parameters scrubland meadow HCG MCG barren land 

Surface Fraction (%) 50 100 100 35 - 

Root Depth (cm) 150 10 50 30 - 

Crop height (cm) 61 4.2 7 5 - 

LAI 3.6 3.2 2.6 0.7 - 

Interception threshold (mm) a 2.1 1.95 1.68 0.59 - 

Interception constant (mm) 0.58 0.61 0.65 0.84 - 
a the interception threshold is obtained from results of literatures in Qilian Mountain. The result for scrubland is 12 
from Liu et al., 2012 while meadow and grassland (HCG and MCG) are from Liu et al., 2013. Interception constant 13 
is obtained by dividing the daily interception thresholds by LAI (Wang et al., 2018). HCG and MCG represent high 14 
coverage grassland and medium coverage grassland, respectively.  15 



 16 

Fig. A1. The comparison of the observed and the simulated profile soil moisture of the scrubland 17 

soil moisture station during the growing season of 2014-2016.  18 





 24 

Fig. A3. The simulated soil moisture during the growing season of 2014-2016 under the condition 25 

of different profile soil properties with the same plant parameters to test the influence of soil 26 

property on the pattern of soil moisture dynamics. X axis is date, y axis is soil moisture (vol. %). 27 



 28 

Fig. A4. The simulated soil moisture during the growing season of 2014-2016 under the condition 29 

of different plant parameters with the same profile soil hydraulic properties (same as the scrubland 30 

station) to test the influence of plant parameters on the pattern of soil moisture dynamics. HCG 31 

and MCG represent high coverage grassland and medium coverage grassland, respectively. 32 
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