000864351 001__ 864351
000864351 005__ 20210528225259.0
000864351 0247_ $$2doi$$a10.1016/j.agrformet.2019.01.034
000864351 0247_ $$2ISSN$$a0168-1923
000864351 0247_ $$2ISSN$$a1873-2240
000864351 0247_ $$2WOS$$aWOS:000463120900004
000864351 0247_ $$2Handle$$a2128/23152
000864351 037__ $$aFZJ-2019-04147
000864351 082__ $$a550
000864351 1001_ $$00000-0002-3149-4096$$aSulis, Mauro$$b0$$eCorresponding author
000864351 245__ $$aIncorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations
000864351 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000864351 3367_ $$2DRIVER$$aarticle
000864351 3367_ $$2DataCite$$aOutput Types/Journal article
000864351 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622198902_14510
000864351 3367_ $$2BibTeX$$aARTICLE
000864351 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864351 3367_ $$00$$2EndNote$$aJournal Article
000864351 520__ $$aA detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics.
000864351 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000864351 536__ $$0G:(DE-Juel1)hbn33_20180501$$aTerrestrial Systems Modeling – Validation with Polarimetric Radar Retrievals and Data Assimilation (hbn33_20180501)$$chbn33_20180501$$fTerrestrial Systems Modeling – Validation with Polarimetric Radar Retrievals and Data Assimilation$$x1
000864351 536__ $$0G:(DE-Juel1)hbn33_20190501$$aTerrestrial Systems Modeling – Validation with Polarimetric Radar Retrievals and Data Assimilation (hbn33_20190501)$$chbn33_20190501$$fTerrestrial Systems Modeling – Validation with Polarimetric Radar Retrievals and Data Assimilation$$x2
000864351 588__ $$aDataset connected to CrossRef
000864351 7001_ $$0P:(DE-HGF)0$$aCouvreur, Valentin$$b1
000864351 7001_ $$0P:(DE-HGF)0$$aKeune, Jessica$$b2
000864351 7001_ $$0P:(DE-Juel1)156154$$aCai, Gaochao$$b3
000864351 7001_ $$0P:(DE-HGF)0$$aTrebs, Ivonne$$b4
000864351 7001_ $$0P:(DE-HGF)0$$aJunk, Juergen$$b5
000864351 7001_ $$0P:(DE-HGF)0$$aShrestha, Prabhakar$$b6
000864351 7001_ $$00000-0003-3001-8642$$aSimmer, Clemens$$b7
000864351 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan J.$$b8
000864351 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b9
000864351 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b10
000864351 773__ $$0PERI:(DE-600)2012165-9$$a10.1016/j.agrformet.2019.01.034$$gVol. 269-270, p. 28 - 45$$p28 - 45$$tAgricultural and forest meteorology$$v269-270$$x0168-1923$$y2019
000864351 8564_ $$uhttps://juser.fz-juelich.de/record/864351/files/manuscript_HRWU.pdf$$yPublished on 2019-02-11. Available in OpenAccess from 2021-02-11.
000864351 8564_ $$uhttps://juser.fz-juelich.de/record/864351/files/manuscript_HRWU.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-02-11. Available in OpenAccess from 2021-02-11.
000864351 909CO $$ooai:juser.fz-juelich.de:864351$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000864351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b8$$kFZJ
000864351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b9$$kFZJ
000864351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b10$$kFZJ
000864351 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000864351 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000864351 9141_ $$y2019
000864351 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864351 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000864351 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864351 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000864351 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAGR FOREST METEOROL : 2017
000864351 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864351 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864351 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864351 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864351 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864351 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000864351 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864351 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864351 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864351 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000864351 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000864351 980__ $$ajournal
000864351 980__ $$aVDB
000864351 980__ $$aI:(DE-Juel1)IBG-3-20101118
000864351 980__ $$aI:(DE-Juel1)NIC-20090406
000864351 980__ $$aUNRESTRICTED
000864351 9801_ $$aFullTexts