001     864351
005     20210528225259.0
024 7 _ |a 10.1016/j.agrformet.2019.01.034
|2 doi
024 7 _ |a 0168-1923
|2 ISSN
024 7 _ |a 1873-2240
|2 ISSN
024 7 _ |a WOS:000463120900004
|2 WOS
024 7 _ |a 2128/23152
|2 Handle
037 _ _ |a FZJ-2019-04147
082 _ _ |a 550
100 1 _ |a Sulis, Mauro
|0 0000-0002-3149-4096
|b 0
|e Corresponding author
245 _ _ |a Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1622198902_14510
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a Terrestrial Systems Modeling – Validation with Polarimetric Radar Retrievals and Data Assimilation (hbn33_20180501)
|0 G:(DE-Juel1)hbn33_20180501
|c hbn33_20180501
|f Terrestrial Systems Modeling – Validation with Polarimetric Radar Retrievals and Data Assimilation
|x 1
536 _ _ |a Terrestrial Systems Modeling – Validation with Polarimetric Radar Retrievals and Data Assimilation (hbn33_20190501)
|0 G:(DE-Juel1)hbn33_20190501
|c hbn33_20190501
|f Terrestrial Systems Modeling – Validation with Polarimetric Radar Retrievals and Data Assimilation
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Couvreur, Valentin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Keune, Jessica
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Cai, Gaochao
|0 P:(DE-Juel1)156154
|b 3
700 1 _ |a Trebs, Ivonne
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Junk, Juergen
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Shrestha, Prabhakar
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Simmer, Clemens
|0 0000-0003-3001-8642
|b 7
700 1 _ |a Kollet, Stefan J.
|0 P:(DE-Juel1)151405
|b 8
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 9
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 10
773 _ _ |a 10.1016/j.agrformet.2019.01.034
|g Vol. 269-270, p. 28 - 45
|0 PERI:(DE-600)2012165-9
|p 28 - 45
|t Agricultural and forest meteorology
|v 269-270
|y 2019
|x 0168-1923
856 4 _ |u https://juser.fz-juelich.de/record/864351/files/manuscript_HRWU.pdf
|y Published on 2019-02-11. Available in OpenAccess from 2021-02-11.
856 4 _ |u https://juser.fz-juelich.de/record/864351/files/manuscript_HRWU.pdf?subformat=pdfa
|x pdfa
|y Published on 2019-02-11. Available in OpenAccess from 2021-02-11.
909 C O |o oai:juser.fz-juelich.de:864351
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)151405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)129548
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AGR FOREST METEOROL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21