000864355 001__ 864355
000864355 005__ 20210130002529.0
000864355 0247_ $$2doi$$a10.1002/qj.3491
000864355 0247_ $$2ISSN$$a0035-9009
000864355 0247_ $$2ISSN$$a1477-870X
000864355 0247_ $$2WOS$$aWOS:000465414100020
000864355 0247_ $$2Handle$$a2128/23136
000864355 037__ $$aFZJ-2019-04151
000864355 082__ $$a550
000864355 1001_ $$0P:(DE-Juel1)169959$$aHan, Cunbo$$b0$$eCorresponding author
000864355 245__ $$aLarge‐eddy simulation of catchment‐scale circulation
000864355 260__ $$aWeinheim [u.a.]$$bWiley$$c2019
000864355 3367_ $$2DRIVER$$aarticle
000864355 3367_ $$2DataCite$$aOutput Types/Journal article
000864355 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565341536_28463
000864355 3367_ $$2BibTeX$$aARTICLE
000864355 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864355 3367_ $$00$$2EndNote$$aJournal Article
000864355 520__ $$aThe impact of soil moisture heterogeneity on the convective boundary layer (CBL) development was studied. Based on results from large‐eddy simulation (LES) applying soil moisture patterns along a river corridor and idealized atmospheric vertical profiles as initial conditions, this study provides insight in the influence of spatial scale of soil moisture heterogeneity on catchment‐scale circulations (CCs) and the ensuing growth of the CBL. The simulation results show that the intensity of organized circulations resulting from soil moisture heterogeneity is nonlinearly dependent upon soil moisture heterogeneity scale λ (SMHS) and horizontal gradient. Because of the large SMHS and strong soil moisture contrast, none of the simulations has reached a true steady state even after 24 h of simulation time. The intensity of organized circulations shows a sigmoidal dependence on SMHS. The optimal SMHS for horizontal transport is on the order of 19.2 km, while optimal SMHS for vertical motions occurs at 2.4 km. In these cases, the CCs also exert a strong influence on the boundary‐layer structure and the entrainment layer. The potential temperature is not constant with height due to a weak mixing in the boundary layer for large SMHS cases. Differences in sensible heat flux profiles between the heterogeneous cases increase with increasing height and reach a maximum at the top of the CBL. Interestingly, boundary‐layer height changes strongly with changing horizontal soil moisture gradient and SMHS while domain means, variances, and amplitudes of land surface energy fluxes are all almost identical. The entrainment flux and subsidence at the top of the CBL are jointly responsible for the CBL height variation.
000864355 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000864355 588__ $$aDataset connected to CrossRef
000864355 7001_ $$0P:(DE-Juel1)172089$$aBrdar, Slavko$$b1
000864355 7001_ $$0P:(DE-HGF)0$$aRaasch, Siegfried$$b2
000864355 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b3
000864355 773__ $$0PERI:(DE-600)2089168-4$$a10.1002/qj.3491$$gVol. 145, no. 720, p. 1218 - 1233$$n720$$p1218 - 1233$$tQuarterly journal of the Royal Meteorological Society$$v145$$x1477-870X$$y2019
000864355 8564_ $$uhttps://juser.fz-juelich.de/record/864355/files/Han_et_al-2019-Quarterly_Journal_of_the_Royal_Meteorological_Society.pdf$$yRestricted
000864355 8564_ $$uhttps://juser.fz-juelich.de/record/864355/files/Han_et_al-2019-Quarterly_Journal_of_the_Royal_Meteorological_Society.pdf?subformat=pdfa$$xpdfa$$yRestricted
000864355 8564_ $$uhttps://juser.fz-juelich.de/record/864355/files/2019_Han_postprint.pdf$$yPublished on 2019-01-28. Available in OpenAccess from 2020-01-28.
000864355 909CO $$ooai:juser.fz-juelich.de:864355$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000864355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169959$$aForschungszentrum Jülich$$b0$$kFZJ
000864355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172089$$aForschungszentrum Jülich$$b1$$kFZJ
000864355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b3$$kFZJ
000864355 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000864355 9141_ $$y2019
000864355 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864355 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864355 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000864355 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bQ J ROY METEOR SOC : 2017
000864355 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864355 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864355 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864355 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864355 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864355 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864355 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864355 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864355 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864355 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000864355 980__ $$ajournal
000864355 980__ $$aVDB
000864355 980__ $$aUNRESTRICTED
000864355 980__ $$aI:(DE-Juel1)IBG-3-20101118
000864355 9801_ $$aFullTexts