000864364 001__ 864364
000864364 005__ 20210130002533.0
000864364 0247_ $$2doi$$a10.1007/s11027-018-9815-y
000864364 0247_ $$2ISSN$$a1381-2386
000864364 0247_ $$2ISSN$$a1573-1596
000864364 0247_ $$2altmetric$$aaltmetric:42451595
000864364 0247_ $$2WOS$$aWOS:000456264900002
000864364 0247_ $$2Handle$$a2128/23127
000864364 037__ $$aFZJ-2019-04159
000864364 082__ $$a690
000864364 1001_ $$0P:(DE-HGF)0$$aDuarte-Guardia, Sandra$$b0$$eCorresponding author
000864364 245__ $$aBetter estimates of soil carbon from geographical data: a revised global approach
000864364 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2019
000864364 3367_ $$2DRIVER$$aarticle
000864364 3367_ $$2DataCite$$aOutput Types/Journal article
000864364 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1571646833_26205
000864364 3367_ $$2BibTeX$$aARTICLE
000864364 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864364 3367_ $$00$$2EndNote$$aJournal Article
000864364 520__ $$aSoils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a global baseline of SOC stocks. We used partial least square (PLS) regression and available geographic datasets that describe SOC, climate, organisms, relief, parent material and time. The accuracy of the model was determined by the root mean square deviation (RMSD) of predicted SOC against 100 independent measurements. The best predictors were related to primary productivity, climate, topography, biome classification, and soil type. The largest C stocks for the top 1 m were found in boreal forests (254 ± 14.3 t ha−1) and tundra (310 ± 15.3 t ha−1). Deserts had the lowest C stocks (53.2 ± 6.3 t ha−1) and statistically similar C stocks were found for temperate and Mediterranean forests (142 - 221 t ha−1), tropical and subtropical forests (94 - 143 t ha−1) and grasslands (99-104 t ha−1). Solar radiation, evapotranspiration, and annual mean temperature were negatively correlated with SOC, whereas soil water content was positively correlated with SOC. Our model explained 49% of SOC variability, with RMSD (0.68) representing approximately 14% of observed C stock variance, overestimating extremely low and underestimating extremely high stocks, respectively. Our baseline PLS predictions of SOC stocks can be used for estimating the maximum amount of C that may be sequestered in soils across biomes
000864364 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000864364 588__ $$aDataset connected to CrossRef
000864364 7001_ $$0P:(DE-HGF)0$$aPeri, Pablo L.$$b1
000864364 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b2$$ufzj
000864364 7001_ $$00000-0002-1166-6591$$aSheil, Douglas$$b3
000864364 7001_ $$0P:(DE-HGF)0$$aLaffan, Shawn W.$$b4
000864364 7001_ $$0P:(DE-Juel1)145704$$aBorchard, Nils$$b5
000864364 7001_ $$0P:(DE-HGF)0$$aBird, Michael I.$$b6
000864364 7001_ $$0P:(DE-HGF)0$$aDieleman, Wouter$$b7
000864364 7001_ $$0P:(DE-HGF)0$$aPepper, David A.$$b8
000864364 7001_ $$0P:(DE-HGF)0$$aZutta, Brian$$b9
000864364 7001_ $$0P:(DE-HGF)0$$aJobbagy, Esteban$$b10
000864364 7001_ $$0P:(DE-HGF)0$$aSilva, Lucas C. R.$$b11
000864364 7001_ $$0P:(DE-HGF)0$$aBonser, Stephen P.$$b12
000864364 7001_ $$0P:(DE-HGF)0$$aBerhongaray, Gonzalo$$b13
000864364 7001_ $$0P:(DE-HGF)0$$aPiñeiro, Gervasio$$b14
000864364 7001_ $$0P:(DE-HGF)0$$aMartinez, Maria-Jose$$b15
000864364 7001_ $$0P:(DE-HGF)0$$aCowie, Annette L.$$b16
000864364 7001_ $$0P:(DE-HGF)0$$aLadd, Brenton$$b17
000864364 773__ $$0PERI:(DE-600)2004169-X$$a10.1007/s11027-018-9815-y$$gVol. 24, no. 3, p. 355 - 372$$n3$$p355 - 372$$tMitigation and adaptation strategies for global change$$v24$$x1573-1596$$y2019
000864364 8564_ $$uhttps://juser.fz-juelich.de/record/864364/files/Duarte-Guardia2019_Article_BetterEstimatesOfSoilCarbonFro.pdf$$yRestricted
000864364 8564_ $$uhttps://juser.fz-juelich.de/record/864364/files/Duarte-Guardia2019_Article_BetterEstimatesOfSoilCarbonFro.pdf?subformat=pdfa$$xpdfa$$yRestricted
000864364 8564_ $$uhttps://juser.fz-juelich.de/record/864364/files/MITI_Duarte-Guardia_etalPostPrint.pdf$$yOpenAccess
000864364 8564_ $$uhttps://juser.fz-juelich.de/record/864364/files/MITI_Duarte-Guardia_etalPostPrint.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864364 909CO $$ooai:juser.fz-juelich.de:864364$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000864364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b2$$kFZJ
000864364 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000864364 9141_ $$y2019
000864364 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864364 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMITIG ADAPT STRAT GL : 2017
000864364 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864364 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864364 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864364 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864364 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000864364 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864364 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864364 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000864364 980__ $$ajournal
000864364 980__ $$aVDB
000864364 980__ $$aUNRESTRICTED
000864364 980__ $$aI:(DE-Juel1)IBG-3-20101118
000864364 9801_ $$aFullTexts