001     864364
005     20210130002533.0
024 7 _ |a 10.1007/s11027-018-9815-y
|2 doi
024 7 _ |a 1381-2386
|2 ISSN
024 7 _ |a 1573-1596
|2 ISSN
024 7 _ |a altmetric:42451595
|2 altmetric
024 7 _ |a WOS:000456264900002
|2 WOS
024 7 _ |a 2128/23127
|2 Handle
037 _ _ |a FZJ-2019-04159
082 _ _ |a 690
100 1 _ |a Duarte-Guardia, Sandra
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Better estimates of soil carbon from geographical data: a revised global approach
260 _ _ |a Dordrecht [u.a.]
|c 2019
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1571646833_26205
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Soils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a global baseline of SOC stocks. We used partial least square (PLS) regression and available geographic datasets that describe SOC, climate, organisms, relief, parent material and time. The accuracy of the model was determined by the root mean square deviation (RMSD) of predicted SOC against 100 independent measurements. The best predictors were related to primary productivity, climate, topography, biome classification, and soil type. The largest C stocks for the top 1 m were found in boreal forests (254 ± 14.3 t ha−1) and tundra (310 ± 15.3 t ha−1). Deserts had the lowest C stocks (53.2 ± 6.3 t ha−1) and statistically similar C stocks were found for temperate and Mediterranean forests (142 - 221 t ha−1), tropical and subtropical forests (94 - 143 t ha−1) and grasslands (99-104 t ha−1). Solar radiation, evapotranspiration, and annual mean temperature were negatively correlated with SOC, whereas soil water content was positively correlated with SOC. Our model explained 49% of SOC variability, with RMSD (0.68) representing approximately 14% of observed C stock variance, overestimating extremely low and underestimating extremely high stocks, respectively. Our baseline PLS predictions of SOC stocks can be used for estimating the maximum amount of C that may be sequestered in soils across biomes
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Peri, Pablo L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 2
|u fzj
700 1 _ |a Sheil, Douglas
|0 0000-0002-1166-6591
|b 3
700 1 _ |a Laffan, Shawn W.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Borchard, Nils
|0 P:(DE-Juel1)145704
|b 5
700 1 _ |a Bird, Michael I.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dieleman, Wouter
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Pepper, David A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zutta, Brian
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Jobbagy, Esteban
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Silva, Lucas C. R.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Bonser, Stephen P.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Berhongaray, Gonzalo
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Piñeiro, Gervasio
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Martinez, Maria-Jose
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Cowie, Annette L.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Ladd, Brenton
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1007/s11027-018-9815-y
|g Vol. 24, no. 3, p. 355 - 372
|0 PERI:(DE-600)2004169-X
|n 3
|p 355 - 372
|t Mitigation and adaptation strategies for global change
|v 24
|y 2019
|x 1573-1596
856 4 _ |u https://juser.fz-juelich.de/record/864364/files/Duarte-Guardia2019_Article_BetterEstimatesOfSoilCarbonFro.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/864364/files/Duarte-Guardia2019_Article_BetterEstimatesOfSoilCarbonFro.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864364/files/MITI_Duarte-Guardia_etalPostPrint.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864364/files/MITI_Duarte-Guardia_etalPostPrint.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864364
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129427
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MITIG ADAPT STRAT GL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21