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Better estimates of soil carbon from geographical data: a revised global 1 

approach 2 

 3 

Abstract 4 

Soils hold the largest pool of organic C on Earth, yet, we are unable to include the 5 

soil organic carbon (SOC) reservoir into climate change mitigation strategies, 6 

because our database for ecosystems where human impacts are minimal is still 7 

fragmentary. The aim of this study is to provide a tool for generating a global 8 

baseline of SOC stocks. We use partial least square (PLS) regression on 9 

measured SOC and freely available geographic datasets that describe climate, 10 

topography, productivity and soil C across biomes. The accuracy of the model was 11 

determined by the root mean square deviation (RMSD) of predicted SOC against 12 

100 independent measurements. The best predictors were primary productivity, 13 

climate, topography, biome classification and soil type. The largest C stocks were 14 

found in boreal forests and tundra, averaging 254 ± 14.3 and 310 ± 15.3 t ha-1 in 15 

the top 1m of soil, respectively. Deserts had the lowest observed C stocks (53.2 ± 16 

6.3 t ha-1). Solar radiation, potential evapotranspiration, and mean annual 17 

temperature were negatively correlated with SOC stocks, whereas soil water 18 

content was positively correlated with SOC stocks. RMSD (0.68) represented 19 

approximately 14% of observed soil C stock variation with overestimation for 20 

extremely low C stocks and underestimation for extremely high C stocks. Using 21 

PLS regression can provide baseline predictions of SOC stocks, which may serve 22 

for estimating the maximum SOC that may be sequestered across biomes.   23 

 24 
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Introduction 27 

 28 

Scientists and policy makers recognise that conservation of ecosystems – where 29 

historical anthropogenic land use change is minimal – hereafter�“pristine�30 

ecosystems” - offers an effective means for preserving terrestrial carbon stocks 31 

and abating greenhouse gas emissions (Ladd and Peri 2013; Stockmann et al. 32 

2013; Scharlemann et al. 2014). As a result, initiatives to reduce greenhouse gas 33 

emissions from deforestation and enhance ecosystem carbon stocks such as 34 

REDD+ (reducing emissions from deforestation and forest degradation in 35 

developing countries) have gained increasing traction, providing financial 36 

incentives for the protection of existing terrestrial carbon stocks in conservation 37 

and production forests (UN-REDD 2016). However, such initiatives focus primarily 38 

on aboveground carbon stocks (Scharlemann et al. 2014), for which precise 39 

geospatial data are being produced (Asner et al. 2010; Ryan et al. 2012; Ladd and 40 

Peri 2013). Much larger amounts of carbon, however, are stored in soil.  41 

It is estimated that the amount  of C stored in soils (1500- 2400 Pg) is three times 42 

larger than that found aboveground biomass (450 – 600 Pg) (Houghton 2014, 43 

Scharlemann et al. 2014). Nevertheless, soil organic carbon (SOC) stocks are 44 

notoriously difficult to predict, especially in pristine ecosystems, which are often 45 

difficult to access. Carbon storage depends on the existing interactions between all 46 

processes in the soil-vegetation-atmosphere system (Silva 2017). Therefore, soil 47 

organic C stocks vary depending on i) carbon inputs resulting from ecosystem 48 

factors such as climate, soil, and vegetation and ii) mechanisms controlling C 49 

mean residence times (Jobbagy and Jackson 2000; Lützow et al. 2006; Laganiere 50 
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et al. 2010; Don et al. 2011; Kögel-Knaber and Amelung 2014). In pristine 51 

ecosystems mean residence times of C stored in plant biomass depends on the 52 

vegetation type (Mahli and Grace 2000; Galbraith et al. 2013) while in soils mean 53 

residence times are C-pool specific and may span decades or even centuries 54 

(Kuzyakov 2006; Schmidt et al. 2011). Therefore, it is not surprising that SOC has 55 

become a focus for climate change mitigation policy. For example, the recent 56 

COP21 initiative aimed at increasing SOC stocks to reduce atmospheric CO2 57 

concentration by 4 parts per mill per year (URL: http://4p1000.org, Minasny et al. 58 

2017). On the other hand, other strategies to mitigate climate change such as 59 

REDD+ still lack a consideration of soils. A major challenge for preserving or 60 

achieving SOC enhancement goals is the paucity of reliable data on current carbon 61 

stocks of pristine ecosystems. Therefore, this study was designed to improve our 62 

understanding and ability to predict SOC stocks in pristine ecosystems across 63 

biomes. 64 

 65 

Quantifying SOC stocks of natural systems requires several challenges to be 66 

overcome. Accurately quantifying SOC stocks at landscape level is difficult because 67 

landscapes are heterogeneous, dynamic, and multiple factors interact to impact both 68 

formation and degradation of SOC (Bui et al. 2009; Don et al. 2011; Powers et al. 69 

2011; Ladd et al. 2013; Manning et al. 2015). In addition, a precise estimation of 70 

SOC stocks is challenging, particularly in pristine ecosystems that are remote and 71 

difficult to access (Scharlemann et al. 2014). However, these ecosystems are 72 

expected to store large SOC pools at a long-term steady state equilibrium maximum 73 

(Sanderman et al. 2017). This provides target baseline values for the amount of SOC 74 
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that could be sequestered in soils. Already Minasny et al. (2017) point out, as also 75 

discussed by many other authors (e.g., Post and Kwon 2000; Lal 2004b; Lam et al. 76 

2013; Sanderman et al. 2010), that it is mostly managed agricultural lands that 77 

provide potential for sequestering SOC, yet, certainly not more than the equilibrium 78 

value than exists under climax vegetation in pristine environments (Lal 2004b). Only 79 

when knowing this maximum amount of C stored in soils, policy makers may have a 80 

clue to value or quantity of soil C that any attempt for mitigating climate change 81 

through better soil management could achieve.  82 

To address the difficulties of accurately quantifying SOC stocks, global maps of SOC 83 

have been developed. For example, the maps developed by the European Union, 84 

and the International Soil Reference and Information Centre (ISRIC, SoilGrids 85 

products) (Hiederer and Köchy 2011; Hengl et al. 2014; Hengl et al. 2017). The 86 

European Union´s global SOC map is largely based on the FAO system of soil 87 

taxonomy (Hiederer and Köchy 2011). This taxonomy is limited as it accounts for 88 

soil forming processes, but it does not integrate climatic controls on SOC 89 

stabilization in a quantitative manner. In contrast, the SoilGrids products (at 1 km 90 

and 250m resolution) are based on automated mapping and machine learning 91 

techniques and consider the CLORPT soil forming factors (i.e., Climate, Organisms, 92 

Relief, Parent material, and Time; Jenny, 1941).  This approach has the drawback 93 

that it calculates SOC from soil properties, such as bulk density, soil organic matter, 94 

and particle distribution, which has much higher uncertainty than SOC calculated 95 

directly from empirical data (Hengl et al. 2014; Hengl et al. 2017). Yet another 96 

drawback is that these maps were developed to predict current SOC stocks without 97 
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considered degree of human impact, leaving the question of predictions for pristine 98 

ecosystems, which could be used as baseline C reference, aside. 99 

To address these important limitations of previous SOC mapping efforts, here we 100 

propose a solution or complementary approach that considers both CLORPT soil 101 

formation factors and uses empirical SOC data to refine SOC stock predictions at 102 

large scales. Specifically, this study predicts global SOC stocks for the top 1 m of 103 

the soil profile, by using freely available geographic data sets [climate, topography, 104 

primary productivity (indicated by normalized difference vegetation index: NDVI), 105 

and soil characteristics] on SOC measurements in pristine ecosystems across 106 

biomes. Our objective was to ease the challenge of predicting and assessing SOC 107 

baselines; this may help guide land management and restoration efforts, e.g. in 108 

pursuit of Land Degradation Neutrality (LDN), where SOC is one of the LDN 109 

indicators (Lal 2016; Cowie et al. 2018).  110 

 111 

Materials and methods 112 

The SOC stock dataset 113 

A database of SOC stocks in pristine ecosystems was compiled from peer-reviewed 114 

publications. Data were obtained from 38 sources (see appendix S1) compiled with 115 

electronic search engines (i.e. Google Scholar and ISI web of science) and by 116 

reference to relevant meta-analyses (Don et al. 2011; Powers et al. 2011; Deng et 117 

al. 2016). In addition a subset of sites from the ISRIC-WISE international soil profile 118 

dataset were included in this study (Batjes 1995). To ensure the best coverage of 119 

the globe, we also included sites from the National Soil Survey Center (NSSA, 120 

www.nrcs.usda.gov), which is operated by the United States Department of 121 
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Agriculture (USDA), and comprises a large dataset of soil properties in several sites 122 

across the globe. For the sites derived from the NSSA, we calculated the C stocks 123 

using the following equation: 124 

� = %� × �� × ℎ × �� 125 

Where C is the C stocks in t ha-1, %C is the percentage of C in soil, �� is the bulk 126 

density (g cm-3), ℎ is the depth of measurement (in cm) and �� is the correction for 127 

coarse fraction measured for each soil pit (Soil Survey Staff 2011). 128 

For this compilation we only included data when SOC stocks were measured to 1 m 129 

depth. And, as the aim of the study was to generate a baseline for C stocks, we only 130 

included sites that could represent pristine ecosystems, i.e., where no information 131 

indicated that they had been used for arable cropping in the past or which showed 132 

unusual climax vegetation. Hence, we equate these sites as pristine, i.e., with 133 

minimal anthropogenic impacts. Therefore, all observed sites are considered to 134 

approximate SOC stock at equilibrium. Assessing the effects of land use on SOC 135 

stocks was not the objective of this study.  136 

 137 

The final dataset included 1346 observations of SOC stocks in pristine ecosystems, 138 

plus an independent dataset of 100 sites for validation (Figure 1). The 1346 sites 139 

represent adequately every biome (Figure 2) and are distributed across all 5 ice-140 

shield free continents (Figure 1). Moreover, the 100 sites used for model accuracy 141 

assessment are also distributed across the 5 continents and 11 of the 12 biome 142 

classes used for the analysis. The only biome type that was not represented in the 143 
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validation dataset was tropical conifer forests, however, this is the biome with the 144 

lowest coverage on Earth (0.3%, Figure 2). 145 

 146 

Data sources used to compile the GIS-derived independent variables 147 

The selection of freely available, GIS-derived, independent variables was guided by 148 

the state factor model (Dokuchaev 1879; Jenny 1941), where soils are described as 149 

a function of Climate, Organisms, Relief, Parent material and Time (CLORPT, see 150 

introduction and discussion).  151 

 152 

Estimates of climate parameters and solar radiation for each site (i.e. 1346 observed 153 

sites for modelling and 100 sites for accuracy calculation) were derived from the 154 

WorldClim data set (Hijmans et al. 2005; Fick and Hijman 2017).  See Table 1 for a 155 

description of the WorldClim parameters and columns H to Z in appendix S1 for 156 

parameter estimates. WorldClim contains geographic surfaces for 19 different 157 

climatic parameters that describe rainfall, temperature and variation in those 158 

parameters at a resolution of 30 arc seconds (approximately 1 km2 at the equator). 159 

The second version of WorldClim (Fick and Hijman 2017) contains monthly values 160 

of solar radiation (in kJ m-2 day-1) at a spatial resolution of approximately 1 km2 at 161 

the equator. We used ArcGIS 10.1 to obtain estimates of the mean yearly values 162 

(column AA, appendix S1). 163 

 164 

Global potential evapotranspiration and aridity index (Trabucco and Zomer 2009) 165 

were downloaded from the CGIAR-CSI GeoPortal (http://www.csi.cgiar.org) at a 166 

spatial resolution of 30 arc seconds (~1 km2) (columns AH and AI in appendix S1). 167 
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The period for this dataset corresponds to 1950-2000. Soil water balance (SWB) 168 

variables (Columns AE to AG in appendix S1) for the 1346 sites were also 169 

downloaded from the CGIAR-CSI GeoPortal (http://www.csi.cgiar.org). These 170 

variables also have a spatial resolution of approximately 1 km2 (30 arc seconds) 171 

(Trabucco and Zomer 2010). 172 

 173 

Biome classification was obtained either from the source publications (column AL in 174 

appendix S1) or from the Global terrestrial ecoregions map, based on the World 175 

Wildlife Fund biome classification (https://www.worldwildlife.org). Biome 176 

classifications have proven useful as a variable for modelling global ecological 177 

processes (Prentice et al. 1992).  178 

 179 

Primary production at each site was approximated using normalized difference 180 

vegetation index (NDVI). We used the global map of the European Space Agency 181 

(ESA), (http://maps.elie.ucl.ac.be, see their Land Surface Seasonality products).  182 

This map provides NDVI values for the period 1999-2012 at 1 km2 spatial resolution 183 

divided in two measurements: Aggregated Mean (AggMean: greenness dynamic 184 

over a period of 7 days) and standard deviation (Std of the mean NDVI, representing 185 

the variability of NDVI over a 7 day period) (columns AB and AC in appendix S1). 186 

 187 

Elevation data (column AD, appendix S1) were downloaded from the SRTM30 188 

project at approx. 1 km2 resolution (https://dds.cr.usgs.gov/srtm/). They comprise a 189 

combination of data from the Shuttle Radar Topography Mission and the U.S. 190 

Geological Survey's GTOPO30 data sets. 191 
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 192 

Information on the geology was obtained from the world geologic maps available 193 

from the USGS database (http://energy.usgs.gov) to determine geologic units and 194 

age (columns AJ, AK and AS in appendix S1). The geochemical, mineralogical, and 195 

physical properties of rocks (column AR in appendix S1) for the 1346 sites were 196 

derived from the Global Lithological Map (Hartmann and Moosdorf 2012). 197 

 198 

Soil taxonomic class of the soil at each site (Column AM, appendix S1) was obtained 199 

directly from the source publication whenever this information was provided. When 200 

this information was not reported we extracted soil types from the SoilGrids soil 201 

taxonomy map at 250m of spatial resolution, based on the World Reference Base 202 

(WRB) (Hengl, et al. 2017). Global Landform Classification data (Columns AN to AQ, 203 

appendix S1) were downloaded from the European Commission 204 

(http://eusoils.jrc.ec.europa.eu). These maps provide information on relief classes, 205 

steepness, soil texture and local convexity following Meybeck et al. (2001) and 206 

Iwahashi and Pike (2007) at a spatial resolution of 1 km2. 207 

 208 

GIS processing  209 

The extraction and calculation of the required GIS-derived independent variables 210 

was done using ArcGIS 10.1 (Redlands, California). All processed geographical 211 

datasets where uploaded to ArcGIS. Using the extraction tool of ArcGIS, we 212 

extracted the corresponding pixel value for each observed site, or nearest neighbor 213 

pixel if the corresponding pixel of target site was not indexed, and added them to 214 

the raw dataset (Appendix S1). For the NDVI values, we obtained estimates of the 215 
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mean values (of the 7 day-period) for the AggMean and Std of the NDVI per pixel, 216 

developing new raster images. Then, we extracted the value per site. Annual 217 

average values of solar radiation, were calculated based on the monthly average 218 

for each pixel, and then the corresponding value was extracted. Finally, we 219 

calculated the total area of each biome. 220 

 221 

Analyses 222 

The dependent variable, SOC stock to 1 m depth, was natural log transformed prior 223 

to analysis to reduce the influence of outliers (Quinn and Keough 2002). The 224 

resulting dataset was analysed using Partial Least Squares (PLS) Regression 225 

(XlStat, AddinSoft, Paris) because this type of analysis allows the inclusion of both 226 

quantitative and categorical independent variables (see appendix S2). This analysis 227 

transforms the original variables to new ones (or components), which are linear 228 

combinations from the originals. To evaluate the strength of correlation between our 229 

observed SOC stocks and the model predictions, we performed a linear regression 230 

(XlStat, AddinSoft, Paris) on the naturally log transformed values of the observed 231 

and the predicted SOC stock values (appendix S2). 232 

To determine de relation between the most representative variables and the 233 

naturally log transformed values of the observed SOC stocks, we performed linear 234 

regressions and ANOVA (XlStat, AddinSoft, Paris). 235 

 236 

To estimate the accuracy of the model, we calculated the predicted values (using 237 

the model equation) for the dataset of 100 sites, then, used root mean square 238 

deviation�(RMSD�=�[∑(observed-predicted)2/n]1/2) (Figure 1, appendix S1). 239 
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Results 240 

The values of SOC stocks (to 1 m depth) in published literature ranged from 3 to 241 

3069 t ha-1 and varied considerably across biomes: boreal forests (253.6 ± 14.3 all 242 

values in t ha-1 ± standard error), deserts (53.2 ± 6.3), Mediterranean forests (141.5 243 

± 20.4), montane grass and shrubs (99.1 ± 6.5), temperate broadleaf and mixed 244 

forests (151.6 ± 15.4), temperate conifer forests (220.9 ± 23.7), temperate 245 

grasslands (104 ± 4.6), tropical and subtropical coniferous forests (93.9 ± 20.6), 246 

tropical and subtropical dry forests (130.7 ± 40.5), tropical and subtropical 247 

grasslands (100.9 ± 10), tropical and subtropical moist forests (143.1 ± 9), tundra 248 

(310.2 ± 15.3) (see also appendix S1 for further detail).  249 

The model derived from the PLS regression proved effective in predicting measured 250 

SOC (Figure 3, y = -0.09+1.01x, R² = 0.49, appendix S2). The predictive model 251 

included all the independent variables (qualitative and quantitative) (see appendix 252 

S2, cell B7099). From the 100 independent sites used to evaluate the accuracy of 253 

the model, we found that the RMSD (0.68) represented approximately 14% of the 254 

average observed C stock values. However, it overestimated values for extremely 255 

low C stocks (e.g. deserts) and underestimated values for extremely high C stocks 256 

(e.g. tundra or boreal forests) (Figure 3). 257 

 258 

The PLS regression analysis indicated that the 10 most important variables in the 259 

model were solar radiation, the standard deviation of normalized difference 260 

vegetation index (i.e. NDVI-std), potential evapotranspiration, soil water balance 261 

variables (i.e. soil water content and aridity stress on vegetation), biome 262 

classification, landform, soil type and temperature-related climate variables (i.e. 263 
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mean diurnal range and mean annual temperature) (Figure 4); see appendix S2 for 264 

statistical details of the PLS regression analysis and model. The further evaluation 265 

of the effect of solar radiation, potential evapotranspiration, soil water content, biome 266 

classification and mean annual temperature on soil C stocks is shown in Figure 5.  267 

Linear regressions for the quantitative variables and the ANOVA for biome 268 

classification gave the following results. 269 

Higher values of solar radiation (y = 6.4-0.0001x, R2=0.27, Figure 5a), potential 270 

evapotranspiration (y = 5.33-0.001x, R2=0.10, Figure 5c) and mean annual 271 

temperature (y = 4.86-0.02x, R2=0.09, Figure 5e) were related to low C stocks. 272 

However, high soil water content (y = 3.95+0.01x, R2=0.12, Figure 5b) was related 273 

to high C stocks.  274 

Further, the highest stored C stocks in the top 1m were found in boreal forests and 275 

tundra, with no detectable statistical difference between these biomes. Temperate 276 

conifer forests and mediterranean forests were statistically similar to both tundra 277 

and boreal forests, but also similar to temperate broadleaf and mixed forests. All 278 

tropical and subtropical forests (i.e. moist, dry and coniferous) had no detectable 279 

statistical difference. Tropical and subtropical grasslands were similar to both 280 

temperate grasslands and montane grass and shrub, although the latter were 281 

statistically different from each other. In contrast, deserts had the lowest observed 282 

C stocks and were statistically different from all other biomes (Figure 5d). 283 

 284 

Discussion 285 

Our results show that baseline SOC stocks can be reasonably well predicted from 286 

freely available geographic and climatic datasets. Using a combination of 287 
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environmental variables.  Across 100 different pristine ecosystem locations we found 288 

that 49% of average variance in SOC stocks across biomes was predicted.  The 289 

most powerful predictive variables in our model were: solar radiation, variability in 290 

plant productivity as approximated by NDVI-std, temperature-related variables, soil 291 

water balance, landform, soil type and biome classification. Sanderman et al. (2017), 292 

who developed two predictive models, one for historical and one for current soil C 293 

stocks (i.e. prior to and after land use changes), also found that the most important 294 

variables in these models (historical and current C stocks) were related to climate 295 

and topographic attributes, such as temperature, elevation, landform and 296 

precipitation. 297 

 298 

Within and across biomes, variation in aboveground biomass is known to be 299 

positively correlated with variations in temperature and precipitation (Sala et al. 300 

1988; Chapin et al. 2002). We also found that these variables affected SOC stocks, 301 

though not necessarily in the same simple direction (Figure 5e). Specifically, our PLS 302 

analysis indicated that SOC stock was negatively correlated with solar radiation, 303 

potential evapotranspiration and temperature, but was positively correlated with soil 304 

water content and primary productivity. This is explained by the fact that beside 305 

primary productivity (see above), soil temperature and moisture also control the rate 306 

of litter decomposition and soil C accumulation (Stockmann et al. 2013). High 307 

temperatures increase microbial activity and decomposition rates, releasing C from 308 

soil to the atmosphere (Chapin et al. 2002; Gilmanov et al. 2007) at rates that depend 309 

on interactions between microbial and plant communities (Winsome et al. 2017). On 310 

the other hand, low temperatures decrease both primary productivity and 311 
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decomposition, explaining why cold environments preserve ancient C-rich soil 312 

horizons under conditions that currently limit plant growth (Adams et al. 2011). We 313 

also found that elevated soil water content correlated with elevated C stocks. This 314 

relationship could again be explained by the increase in primary productivity due to 315 

higher soil moisture and higher precipitation values, lower soil temperatures at 316 

elevated water supply, and enhanced SOC storage where water stagnates, e.g., in 317 

depressions (e.g., Batjes 1996; Chapin et al. 2002; Doetterl et al. 2013; Adhikari et 318 

al. 2014). In any case, we were able to describe significant predictable relationships 319 

that show how SOC stocks might change with climate.  320 

 321 

The key driver behind soil temperature and moisture is solar radiation. It generally 322 

promotes plant productivity (Chapin et al. 2002; Gilmanov et al. 2007; Ladd, et al. 323 

2009; Ladd, et al. 2014) and therefore soil C inputs, in ecosystems that are not water-324 

limited. The negative effect of solar radiation on SOC levels could, in part, be related 325 

to the role of solar radiation in the decomposition of surface litter (Austin and Vivanco 326 

2006; Borchard et al. 2014) or to litter quality, which may change with primary 327 

production (Bouwman 1990). Beside temperature and geography, litter quality (e.g. 328 

nutrients, C:N ratio or lignin:N ratio) is a key regulator of initial surface litter 329 

decomposition rates (Zhang et al. 2008) and thus likely also for formation of stable 330 

organic matter (Neff et al. 2002). 331 

 332 

Variability in primary productivity (i.e NDVI-std) was an important predictive variable 333 

but this may be due to vegetation characteristics influenced by topography instead 334 

of primary productivity itself (Mulder et al. 2011). For example, in Argentinean 335 
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Nothofagus forests, evergreen species (i.e. less variability in primary productivity) 336 

are more common in lowlands, near lakes and locations with alluvial soils, while 337 

upland forests are generally deciduous (i.e. more variability in primary productivity; 338 

Peri et al. 2012). Similarly, Brazilian Cerrado evergreen forests are typically found 339 

on alluvial and riparian sites whereas drought deciduous species occur in dryer 340 

upland Cerrado sites (Silva et al. 2008). Because SOC tends to accumulate in 341 

depressions (Roman-Sanchez et al. 2018, Figure 1S Appendix) and because plant 342 

productivity is more stable in these same locations, this may mean that continuous 343 

growth and less variability in primary productivity, leads to a positive correlation 344 

between NDVI-std and SOC. More research is required to elucidate causal 345 

relationships and the mechanisms that determine them across the globe. However, 346 

despite the questions related to mechanisms the data do clearly show that it is 347 

possible to predict SOC storage from freely available climatic and GIS data, thus 348 

offering scientist and policy makers a tool for valuing the success of conservation 349 

measures or for estimating the potential of a given degraded biome to sequester C; 350 

i.e. up until the baseline in pristine ecosystems is reached. 351 

 352 

Implications for large-scale C mapping 353 

We have shown that using now readily available geographic datasets can lead to a 354 

good ability to model, predict and assess SOC stocks that could in turn provide better 355 

targeting of habitat protection to help maximise both carbon storage and 356 

conservation of nature (Sheil et al. 2016). Our analysis provides a clear 357 

demonstration of a strategy that could help improve the current generation of global 358 

SOC maps in pristine ecosystems and also shows that independent variables that 359 
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can be derived simply, such as simple ecosystem classifications, can add significant 360 

power to empirical models that aim to predict soil C stocks.  361 

As the quality and availability of geospatial and satellite data that relate to the 362 

mechanistic factors that drive soil formation (Climate, Organisms, Relief, Parent 363 

material and Time; i.e. CLORPT, see first paragraph of methods) (Dokuchaev 1879; 364 

Jenny 1941) advance, more accurate predictions should become possible (Ladd et 365 

al. 2014). Additionally, advances in GIS capability, data handling and statistical 366 

methods, mean that we are now in a position to develop a quantitative version of the 367 

CLORPT model that allows accurate prediction of SOC stocks in pristine ecosystems 368 

on a large scale. With better resolution of NDVI, soil and topographic data within a 369 

given landscape, producing highly resolved SOC maps at catchment scale is then 370 

feasible based on advanced statistical or machine learning tools like random forest 371 

regression (e.g., Grimm et al. 2008; Wiesmeier et al. 2014; Hounkpatin et al. 2018).  372 

Here, we found that within the biomes mean standard deviation ranged from 36 t C 373 

ha-1 in tropical and subtropical coniferous forests to 277 t C ha-1 in tundra biome, 374 

thus tropical and subtropical coniferous forest were the least represented biome both 375 

in the dataset (N=3) and of biomes in general, representing only 0.3% of the total ice 376 

free-terrestrial surface. While tundra, was the best represented biome (N=325) and 377 

also the one with the largest area (~40%) of the total ice free terrestrial surface 378 

(Figure 2). This could indicate that larger biome coverage means more variability in 379 

C stocks.  380 

 381 

Yet, large difference between C stocks across extreme biomes, for example, the 382 

ones existing between tundra or boreal forests and deserts, includes the risks of an 383 
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overestimation and underestimation of extreme values (very low and high SOC 384 

stocks) in our model, thus calling for even more sophisticated non-linear learning 385 

algorithms for potential improvements to achieve more exact SOC estimations for 386 

extreme environments.  387 

 388 

Implications for conservation and management strategies 389 

The development of a global C stock baseline can facilitate efforts to include SOC 390 

in schemes such as REDD+ that aim to conserve ecosystems and their carbon 391 

stocks and for achievement of Land Degradation Neutrality (Cowie et al. 2018). 392 

Including SOC in such schemes with the aim of increasing SOC stocks, could 393 

favour better land management practices. These practices include conservation, 394 

biological farming and the use of compost and eventually biochar (Adams et al. 395 

2011; Ladd et al. 2018). Although these practices can increase SOC stocks, there 396 

are several limitations in adopting them. These limitations include negative impact 397 

on food security (from lower yields of organic systems and from the conversion of 398 

agricultural lands to woodlands), limited biomass resources for compost and 399 

biochar, limited economic resources of land, among other limiting factors (Adams 400 

et al. 2011; Poulton et al. 2017). Additionally, soil management strategies should 401 

also focus on the restoration of degraded ecosystems and desertified landscapes, 402 

restoration and improved productivity of grasslands, and reforestation (Lal 2004a; 403 

Adams et al. 2011; Lal 2013), which in some cases have been shown to increase 404 

SOC beyond levels found in the most productive terrestrial ecosystems (Silva et al. 405 

2013; Silva et al. 2015). Also, when developing management or conservation 406 

strategies changes in species composition across biomes should be taken into 407 
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account.  This is because such variations cause shifting ecosystem C fixation and 408 

water balance, having important consequences for SOC stocks and groundwater 409 

recharge (Maxwell et al. 2018). 410 

In our study, we do not include the effects of anthropogenic land use change (LUC) 411 

on SOC stocks, since we focus on pristine ecosystems. However, LUC have been 412 

linked to important C stocks variations, especially in transitioning from pristine 413 

ecosystems to cropping (Smith et al. 2008; Berhongaray et al. 2013; Rabbi et al. 414 

2015; Sanderman et al. 2017). Recent work has shown that combining LUC and 415 

freely available GIS data may also predict changes in SOC stocks in croplands (e.g., 416 

Sandermann et al. 2017; Hounkpatin et al. 2018), thus providing an option to rate 417 

former SOC losses against baseline SOC levels as assessed here – which is 418 

basically the inverse of estimating the maximum amount of SOC that might 419 

potentially be re-sequestered. Yet, all these changes depend on time, and while 420 

changes in SOC losses may be rapid, occuring within a few years to decades (Dalal 421 

and Mayer 1986; Solomon et al. 2007), it may take decades until SOC levels restore, 422 

frequently not to the level of the pristine environment (Robles and Burke 1998; Post 423 

and Kwon, 2000; Lal 2004b; Preger et al. 2010). For future Earth system modelling 424 

it will likely be needed to augment the statistical modelling approach used here with 425 

process-based models to gain mechanistic insight and facilitate prediction and 426 

analysis of possible future scenarios.   427 

 428 

Conclusion  429 

We have shown that SOC stocks of pristine ecosystems can be accurately 430 

predicted using available data. Further, 49% of average variance for pristine 431 
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ecosystems across biomes was predicted. Our model provides a theoretical 432 

baseline for accurately identifying sites with a high potential for C storage through 433 

restoration and rehabilitation of degraded land. Additionally, it shows where the 434 

highest SOC stocks are in pristine ecosystems, and where efforts can be best 435 

made to conserve soil C. And perhaps most importantly, this information can be 436 

used in conjunction with estimates of current SOC stocks (obtained from other 437 

sources, e.g. current SOC stocks from Sanderman et al. 2017) to identify sites with 438 

the greatest gap between current and potential SOC stocks. This could help guide 439 

the selection of sites for restoration, to achieve maximum negative emissions, 440 

through carbon sequestration in soil. 441 

 442 
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Data to this article can be found online at: 444 
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Table legends 728 
 729 
Table 1 A description of the WorldClim parameters (i.e. climatic variables) 730 

extracted with ArcGIS 10.1 (Redlands, California) for each observed site used for 731 

the development of the model (further detail available at http://www.worldclim.com, 732 

and in Hijmans et al. 2005)  733 
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Table 1 736 
 737 

Parameter Description 

BIO1  Annual mean temperature 

BIO2  Mean diurnal range [mean of monthly (max. temp.–min. 

temp.)] 

BIO3  Isothermality (BIO2/BIO7) (x 100) 

BIO4  Temperature seasonality (standard deviation x 100) 

BIO5  Max. temperature of warmest month 

BIO6  Min. temperature of coldest month 

BIO7  Temperature annual range (BIO5–BIO6) 

BIO8  Mean temperature of wettest quarter 

BIO9 Mean temperature of driest quarter 

BIO10 Mean temperature of warmest quarter 

BIO11 Mean temperature of coldest quarter 

BIO12 Annual precipitation 

BIO13 Precipitation of wettest month 

BIO14 Precipitation of driest month 

BIO15 Precipitation seasonality (coefficient of variation) 

BIO16 Precipitation of wettest quarter 

BIO17 Precipitation of driest quarter 

BIO18 Precipitation of warmest quarter 

BIO19 Precipitation of coldest quarter 

 738 
 739 

 740 

Figure legends 741 

Fig. 1 The global distribution of the 1346 soil pits that were geo-referenced and 742 

used to measure SOC stock (t ha-1) to 1-meter depth and the 100 sites used for 743 

validation of the model obtained with partial least square (PLS) regression 744 

analysis.  Raw data and source publications from which the data were obtained are 745 

provided in appendix S1 746 

Fig. 2 Number of observations of C stocks according to each biome classification 747 

(following the WWF terrestrial biome classification) and the area (millions of km2) 748 
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that each biome represent in the globe. BF= boreal forests, D= deserts, MF= 749 

Mediterranean forests, MGS= montane grass and shrub, TBF= temperate 750 

broadleaf and mixed forest, TmG= temperate grasslands, TrCF= tropical and 751 

subtropical coniferous forests, TDF= tropical and subtropical dry forests, TrG= 752 

tropical grasslands, TMF= tropical and subtropical moist forest, T= tundra 753 

 754 

Fig. 3 The correlation between predictions of the natural log of SOC stocks derived 755 

from the PLS regression model constructed with independent variables derived 756 

from freely available geographic datasets and the same measured (natural log 757 

transformed) values of SOC stock obtained from the peer reviewed literature (y = -758 

0.09+1.01x, R² = 0.49).  See appendix S2 for further statistical detail of the partial 759 

least square (PLS) regression model. RMSD: root mean square deviation 760 

 761 

Fig. 4 The top ten variables for SOC stock prediction, based on node frequencies 762 

from the PLS regression analysis (see appendix s2 for details). Solar radiation (kJ 763 

m-2) for the period 1970-2000, NDVI = Normalized Difference Vegetation Index, in 764 

this case the mean value of the standard deviation of the  recorded values between 765 

1999 and 2012, Landform = relief class (e.g. lowlands, plains, high altitude 766 

mountains, etc.), soil water content in and aridity stress on vegetation for the period 767 

1950-2000. PET is Potential Evapotranspiration (1950-2000), soil type according to 768 

WRB classification and biome classification (e.g. tundra, boreal forest, temperate 769 

grasslands, etc.) 770 
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Fig. 5 Relation between observed C stocks and the most representative variables 772 

in the projection. Obtained from the PLS regression model for the 1346 sites with 773 

measured C stocks (t ha-1). a) Solar Radiation (kJ m-2) vs. log transformed C 774 

stocks, b) Soil water content (%) vs. log transformed C stocks, c) Potential 775 

evapotranspiration vs. log transformed C stocks, d) ANOVA for C stocks according 776 

to biome classification (Fisher LSD test,�α=0.99), different letters mean statistical 777 

differences. BF= boreal forests, D= deserts, MF= Mediterranean forests, MGS= 778 

montane grass and shrub, TBF= temperate broadleaf and mixed forest, TmG= 779 

temperate grasslands, TrCF= tropical and subtropical coniferous forests, TDF= 780 

tropical and subtropical dry forests, TrG= tropical grasslands, TMF= tropical and 781 

subtropical moist forest, T= tundra. e) Annual mean temperature (°C) vs. log 782 

transformed C stocks  783 
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