000864381 001__ 864381
000864381 005__ 20240712112814.0
000864381 0247_ $$2doi$$a10.1039/C9CP02651G
000864381 0247_ $$2ISSN$$a1463-9076
000864381 0247_ $$2ISSN$$a1463-9084
000864381 0247_ $$2altmetric$$aaltmetric:64249661
000864381 0247_ $$2pmid$$apmid:31348470
000864381 0247_ $$2WOS$$aWOS:000479245800010
000864381 037__ $$aFZJ-2019-04173
000864381 041__ $$aEnglish
000864381 082__ $$a540
000864381 1001_ $$0P:(DE-Juel1)129503$$aMerz, Steffen$$b0$$eCorresponding author
000864381 245__ $$aDynamics of [Pyr 13 ][Tf 2 N] ionic liquid confined to carbon black
000864381 260__ $$aCambridge$$bRSC Publ.$$c2019
000864381 3367_ $$2DRIVER$$aarticle
000864381 3367_ $$2DataCite$$aOutput Types/Journal article
000864381 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565620715_4779
000864381 3367_ $$2BibTeX$$aARTICLE
000864381 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864381 3367_ $$00$$2EndNote$$aJournal Article
000864381 520__ $$aThe intrinsic ionic nature of room temperature ionic liquids (RTILs) bears the potential to replace classical aqueous electrolytes in electrochemical applications, for example in metal–air batteries. For a systematic adjustment of RTIL properties in porous cathodes, the ionic arrangement under confinement is of prime importance. Using spectrally resolved pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) and spin–lattice NMR relaxation time (T1) distributions, the dynamics of 1-methyl-1-propylpyrrolidiniumbis(trifluoromethylsulfonyl)imide ([Pyr13][Tf2N]) confined to carbon black were investigated. A considerable dependence of the [PYR13] mobility on the loading fraction of the carbon black pore space was found. There is evidence for a preferential layering of the RTIL adjacent to the carbon surface and a dependence of the ionic configuration on the local structure of the carbon surface. The inversion efficiency of inversion-recovery T1 data indicates a quasi-stationary layer at the carbon surface with solid-like properties, where the bulk-like properties of the RTIL are adopted as the distance to the surface increases. From the NMR diffusion data an intermediate layer between the quasi-stationary and the bulk-like RTIL is evident. This layer shows a particularly strong pore space loading dependence. While it has an anisotropic, two-dimensional mobility with reduced diffusion perpendicular to the surface at any loading, when it interfaces a gas phase at low loading its mobility is higher than bulk diffusion by up to an order of magnitude and chemical exchange with other layers is low. This layer appears to be of particular importance for the ion exchange between RTIL environments with different spacing from the carbon surface and hence crucial for the overall dynamics of RTILs in the investigated porous environment.
000864381 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000864381 588__ $$aDataset connected to CrossRef
000864381 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b1$$ufzj
000864381 7001_ $$0P:(DE-Juel1)165985$$aTaranenko, Svitlana$$b2$$ufzj
000864381 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3$$ufzj
000864381 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b4$$ufzj
000864381 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C9CP02651G$$gVol. 21, no. 31, p. 17018 - 17028$$n31$$p17018 - 17028$$tPhysical chemistry, chemical physics$$v21$$x1463-9084$$y2019
000864381 8564_ $$uhttps://juser.fz-juelich.de/record/864381/files/c9cp02651g.pdf$$yRestricted
000864381 8564_ $$uhttps://juser.fz-juelich.de/record/864381/files/c9cp02651g.pdf?subformat=pdfa$$xpdfa$$yRestricted
000864381 909CO $$ooai:juser.fz-juelich.de:864381$$pVDB
000864381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129503$$aForschungszentrum Jülich$$b0$$kFZJ
000864381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b1$$kFZJ
000864381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165985$$aForschungszentrum Jülich$$b2$$kFZJ
000864381 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165985$$aIEK-9 $$b2
000864381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
000864381 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
000864381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b4$$kFZJ
000864381 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b4$$kRWTH
000864381 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000864381 9141_ $$y2019
000864381 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000864381 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864381 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000864381 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2017
000864381 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864381 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864381 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000864381 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864381 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864381 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864381 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864381 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864381 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864381 920__ $$lyes
000864381 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000864381 980__ $$ajournal
000864381 980__ $$aVDB
000864381 980__ $$aI:(DE-Juel1)IEK-9-20110218
000864381 980__ $$aUNRESTRICTED
000864381 981__ $$aI:(DE-Juel1)IET-1-20110218