000864382 001__ 864382
000864382 005__ 20240709082041.0
000864382 0247_ $$2doi$$a10.1016/j.ssc.2019.04.011
000864382 0247_ $$2ISSN$$a0038-1098
000864382 0247_ $$2ISSN$$a1879-2766
000864382 0247_ $$2altmetric$$aaltmetric:59782843
000864382 0247_ $$2WOS$$aWOS:000467930100010
000864382 0247_ $$2Handle$$a2128/24854
000864382 037__ $$aFZJ-2019-04174
000864382 041__ $$aEnglish
000864382 082__ $$a530
000864382 1001_ $$0P:(DE-HGF)0$$aChayambuka, K.$$b0
000864382 245__ $$aA modified pseudo-steady-state analytical expression for battery modeling
000864382 260__ $$aNew York, NY [u.a.]$$bElsevier Science$$c2019
000864382 3367_ $$2DRIVER$$aarticle
000864382 3367_ $$2DataCite$$aOutput Types/Journal article
000864382 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565617838_7092
000864382 3367_ $$2BibTeX$$aARTICLE
000864382 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864382 3367_ $$00$$2EndNote$$aJournal Article
000864382 520__ $$aThe solid-state spherical diffusion equation with flux boundary conditions is a standard problem in lithium-ion battery simulations. If finite difference schemes are applied, many nodes across a discretized battery electrode become necessary, in order to reach a good approximation of solution. Such a grid-based approach can be appropriately avoided by implementing analytical methods which reduce the computational load. The pseudo-steady-state (PSS) method is an exact analytical solution method, which provides accurate solid-state concentrations at all current densities. The popularization of the PSS method, in the existing form of expression, is however constrained by a solution convergence problem. In this short communication, a modified PSS (MPSS) expression is presented which provides uniformly convergent solutions at all times. To minimize computational runtime, a fast MPPS (FMPPS) expression is further developed, which is shown to be faster by approximately three orders of magnitude and has a constant time complexity. Using the FMPSS method, uniformly convergent exact solutions are obtained for the solid-state diffusion problem in spherical active particles.
000864382 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000864382 588__ $$aDataset connected to CrossRef
000864382 7001_ $$0P:(DE-HGF)0$$aMulder, G.$$b1
000864382 7001_ $$0P:(DE-Juel1)173719$$aDanilov, Dmitri$$b2$$ufzj
000864382 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b3$$eCorresponding author$$ufzj
000864382 773__ $$0PERI:(DE-600)1467698-9$$a10.1016/j.ssc.2019.04.011$$gVol. 296, p. 49 - 53$$p49 - 53$$tSolid state communications$$v296$$x0038-1098$$y2019
000864382 8564_ $$uhttps://juser.fz-juelich.de/record/864382/files/Chayambuka_Quasi_steady_state_modeling_2018_SScom.pdf$$yPublished on 2019-04-24. Available in OpenAccess from 2021-04-24.
000864382 8564_ $$uhttps://juser.fz-juelich.de/record/864382/files/Chayambuka_Quasi_steady_state_modeling_2018_SScom.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-04-24. Available in OpenAccess from 2021-04-24.
000864382 909CO $$ooai:juser.fz-juelich.de:864382$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864382 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173719$$aForschungszentrum Jülich$$b2$$kFZJ
000864382 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)173719$$aTU Eindhoven $$b2
000864382 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b3$$kFZJ
000864382 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165918$$a University of Technology Sydney$$b3
000864382 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000864382 9141_ $$y2019
000864382 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864382 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864382 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000864382 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE COMMUN : 2017
000864382 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864382 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864382 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864382 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864382 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864382 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864382 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864382 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864382 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864382 920__ $$lyes
000864382 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000864382 9801_ $$aFullTexts
000864382 980__ $$ajournal
000864382 980__ $$aVDB
000864382 980__ $$aUNRESTRICTED
000864382 980__ $$aI:(DE-Juel1)IEK-9-20110218
000864382 981__ $$aI:(DE-Juel1)IET-1-20110218