001     864382
005     20240709082041.0
024 7 _ |a 10.1016/j.ssc.2019.04.011
|2 doi
024 7 _ |a 0038-1098
|2 ISSN
024 7 _ |a 1879-2766
|2 ISSN
024 7 _ |a altmetric:59782843
|2 altmetric
024 7 _ |a WOS:000467930100010
|2 WOS
024 7 _ |a 2128/24854
|2 Handle
037 _ _ |a FZJ-2019-04174
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Chayambuka, K.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A modified pseudo-steady-state analytical expression for battery modeling
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1565617838_7092
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The solid-state spherical diffusion equation with flux boundary conditions is a standard problem in lithium-ion battery simulations. If finite difference schemes are applied, many nodes across a discretized battery electrode become necessary, in order to reach a good approximation of solution. Such a grid-based approach can be appropriately avoided by implementing analytical methods which reduce the computational load. The pseudo-steady-state (PSS) method is an exact analytical solution method, which provides accurate solid-state concentrations at all current densities. The popularization of the PSS method, in the existing form of expression, is however constrained by a solution convergence problem. In this short communication, a modified PSS (MPSS) expression is presented which provides uniformly convergent solutions at all times. To minimize computational runtime, a fast MPPS (FMPPS) expression is further developed, which is shown to be faster by approximately three orders of magnitude and has a constant time complexity. Using the FMPSS method, uniformly convergent exact solutions are obtained for the solid-state diffusion problem in spherical active particles.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mulder, G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Danilov, Dmitri
|0 P:(DE-Juel1)173719
|b 2
|u fzj
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.ssc.2019.04.011
|g Vol. 296, p. 49 - 53
|0 PERI:(DE-600)1467698-9
|p 49 - 53
|t Solid state communications
|v 296
|y 2019
|x 0038-1098
856 4 _ |y Published on 2019-04-24. Available in OpenAccess from 2021-04-24.
|u https://juser.fz-juelich.de/record/864382/files/Chayambuka_Quasi_steady_state_modeling_2018_SScom.pdf
856 4 _ |y Published on 2019-04-24. Available in OpenAccess from 2021-04-24.
|x pdfa
|u https://juser.fz-juelich.de/record/864382/files/Chayambuka_Quasi_steady_state_modeling_2018_SScom.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864382
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173719
910 1 _ |a TU Eindhoven
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)173719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165918
910 1 _ |a University of Technology Sydney
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE COMMUN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21