Hauptseite > Publikationsdatenbank > A modified pseudo-steady-state analytical expression for battery modeling > print |
001 | 864382 | ||
005 | 20240709082041.0 | ||
024 | 7 | _ | |a 10.1016/j.ssc.2019.04.011 |2 doi |
024 | 7 | _ | |a 0038-1098 |2 ISSN |
024 | 7 | _ | |a 1879-2766 |2 ISSN |
024 | 7 | _ | |a altmetric:59782843 |2 altmetric |
024 | 7 | _ | |a WOS:000467930100010 |2 WOS |
024 | 7 | _ | |a 2128/24854 |2 Handle |
037 | _ | _ | |a FZJ-2019-04174 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Chayambuka, K. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a A modified pseudo-steady-state analytical expression for battery modeling |
260 | _ | _ | |a New York, NY [u.a.] |c 2019 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1565617838_7092 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The solid-state spherical diffusion equation with flux boundary conditions is a standard problem in lithium-ion battery simulations. If finite difference schemes are applied, many nodes across a discretized battery electrode become necessary, in order to reach a good approximation of solution. Such a grid-based approach can be appropriately avoided by implementing analytical methods which reduce the computational load. The pseudo-steady-state (PSS) method is an exact analytical solution method, which provides accurate solid-state concentrations at all current densities. The popularization of the PSS method, in the existing form of expression, is however constrained by a solution convergence problem. In this short communication, a modified PSS (MPSS) expression is presented which provides uniformly convergent solutions at all times. To minimize computational runtime, a fast MPPS (FMPPS) expression is further developed, which is shown to be faster by approximately three orders of magnitude and has a constant time complexity. Using the FMPSS method, uniformly convergent exact solutions are obtained for the solid-state diffusion problem in spherical active particles. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Mulder, G. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Danilov, Dmitri |0 P:(DE-Juel1)173719 |b 2 |u fzj |
700 | 1 | _ | |a Notten, Peter H. L. |0 P:(DE-Juel1)165918 |b 3 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1016/j.ssc.2019.04.011 |g Vol. 296, p. 49 - 53 |0 PERI:(DE-600)1467698-9 |p 49 - 53 |t Solid state communications |v 296 |y 2019 |x 0038-1098 |
856 | 4 | _ | |y Published on 2019-04-24. Available in OpenAccess from 2021-04-24. |u https://juser.fz-juelich.de/record/864382/files/Chayambuka_Quasi_steady_state_modeling_2018_SScom.pdf |
856 | 4 | _ | |y Published on 2019-04-24. Available in OpenAccess from 2021-04-24. |x pdfa |u https://juser.fz-juelich.de/record/864382/files/Chayambuka_Quasi_steady_state_modeling_2018_SScom.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:864382 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)173719 |
910 | 1 | _ | |a TU Eindhoven |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)173719 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)165918 |
910 | 1 | _ | |a University of Technology Sydney |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)165918 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SOLID STATE COMMUN : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|