000864385 001__ 864385
000864385 005__ 20240709082220.0
000864385 0247_ $$2doi$$a10.1016/j.electacta.2019.05.025
000864385 0247_ $$2ISSN$$a0013-4686
000864385 0247_ $$2ISSN$$a1873-3859
000864385 0247_ $$2WOS$$aWOS:000470237300007
000864385 037__ $$aFZJ-2019-04177
000864385 041__ $$aEnglish
000864385 082__ $$a540
000864385 1001_ $$0P:(DE-Juel1)164223$$aWeinrich, Henning$$b0$$eCorresponding author
000864385 245__ $$aElectrode thickness-dependent formation of porous iron electrodes for secondary alkaline iron-air batteries
000864385 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000864385 3367_ $$2DRIVER$$aarticle
000864385 3367_ $$2DataCite$$aOutput Types/Journal article
000864385 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565617734_6659
000864385 3367_ $$2BibTeX$$aARTICLE
000864385 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864385 3367_ $$00$$2EndNote$$aJournal Article
000864385 520__ $$aSecondary iron-air batteries re-gained considerable scientific attention due to their excellent energy densities, pronounced environmental friendliness and exceptional reversibility compared to other metal-air batteries. In order to exploit the energy density of iron on full-cell level, the ratio between anode- and overall battery material should be as large as possible, aiming at practically competitive iron-air battery performances in the future. Therefore, here, we report the investigation of comparatively thick, pressed-plate, carbonyl iron-anodes and the distinctive attempt to further elucidate the processes behind the electrochemical formation. In order to do so, the electrode thickness-dependent charge-/discharge performance, the wetting behavior and the specific surface area of the electrodes were examined. In addition to the established dissolution and precipitation mechanism of iron, we propose that a gradually increasing number of electrochemically active carbonyl iron particles may be an additional source of active iron surface for the steeply increasing discharge capacity during the formation, which is particularly relevant for thick rather than thin electrodes. Furthermore, substantiated by cross-section SEM-images, we propose that the increasing number of active carbonyl iron particles is induced by microstructural changes of the electrode, hypothetically driven by hydrogen evolution during the formation period. Bound to the access of electrolyte, the process suggests the presence of active material on the outside and inactive, since non-wetted, material on the inside of porous carbonyl iron-anodes depending on their state of formation.
000864385 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000864385 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000864385 588__ $$aDataset connected to CrossRef
000864385 7001_ $$0P:(DE-Juel1)170077$$aGehring, Markus$$b1
000864385 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2
000864385 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b3
000864385 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4
000864385 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2019.05.025$$gVol. 314, p. 61 - 71$$p61 - 71$$tElectrochimica acta$$v314$$x0013-4686$$y2019
000864385 909CO $$ooai:juser.fz-juelich.de:864385$$pVDB
000864385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164223$$aForschungszentrum Jülich$$b0$$kFZJ
000864385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170077$$aForschungszentrum Jülich$$b1$$kFZJ
000864385 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)170077$$aRWTH Aachen$$b1$$kRWTH
000864385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
000864385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b3$$kFZJ
000864385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
000864385 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
000864385 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000864385 9141_ $$y2019
000864385 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864385 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2017
000864385 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864385 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864385 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000864385 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864385 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864385 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864385 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864385 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864385 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864385 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864385 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELECTROCHIM ACTA : 2017
000864385 920__ $$lyes
000864385 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000864385 980__ $$ajournal
000864385 980__ $$aVDB
000864385 980__ $$aI:(DE-Juel1)IEK-9-20110218
000864385 980__ $$aUNRESTRICTED
000864385 981__ $$aI:(DE-Juel1)IET-1-20110218