001     864385
005     20240709082220.0
024 7 _ |a 10.1016/j.electacta.2019.05.025
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a WOS:000470237300007
|2 WOS
037 _ _ |a FZJ-2019-04177
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Weinrich, Henning
|0 P:(DE-Juel1)164223
|b 0
|e Corresponding author
245 _ _ |a Electrode thickness-dependent formation of porous iron electrodes for secondary alkaline iron-air batteries
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1565617734_6659
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Secondary iron-air batteries re-gained considerable scientific attention due to their excellent energy densities, pronounced environmental friendliness and exceptional reversibility compared to other metal-air batteries. In order to exploit the energy density of iron on full-cell level, the ratio between anode- and overall battery material should be as large as possible, aiming at practically competitive iron-air battery performances in the future. Therefore, here, we report the investigation of comparatively thick, pressed-plate, carbonyl iron-anodes and the distinctive attempt to further elucidate the processes behind the electrochemical formation. In order to do so, the electrode thickness-dependent charge-/discharge performance, the wetting behavior and the specific surface area of the electrodes were examined. In addition to the established dissolution and precipitation mechanism of iron, we propose that a gradually increasing number of electrochemically active carbonyl iron particles may be an additional source of active iron surface for the steeply increasing discharge capacity during the formation, which is particularly relevant for thick rather than thin electrodes. Furthermore, substantiated by cross-section SEM-images, we propose that the increasing number of active carbonyl iron particles is induced by microstructural changes of the electrode, hypothetically driven by hydrogen evolution during the formation period. Bound to the access of electrolyte, the process suggests the presence of active material on the outside and inactive, since non-wetted, material on the inside of porous carbonyl iron-anodes depending on their state of formation.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gehring, Markus
|0 P:(DE-Juel1)170077
|b 1
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 2
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 3
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 4
773 _ _ |a 10.1016/j.electacta.2019.05.025
|g Vol. 314, p. 61 - 71
|0 PERI:(DE-600)1483548-4
|p 61 - 71
|t Electrochimica acta
|v 314
|y 2019
|x 0013-4686
909 C O |o oai:juser.fz-juelich.de:864385
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164223
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)170077
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)170077
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELECTROCHIM ACTA : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21