000864391 001__ 864391
000864391 005__ 20240709082041.0
000864391 0247_ $$2doi$$a10.1063/1.5081086
000864391 0247_ $$2ISSN$$a0021-8979
000864391 0247_ $$2ISSN$$a0148-6349
000864391 0247_ $$2ISSN$$a1089-7550
000864391 0247_ $$2ISSN$$a1520-8850
000864391 0247_ $$2ISSN$$a2163-5102
000864391 0247_ $$2Handle$$a2128/22586
000864391 0247_ $$2WOS$$aWOS:000467257200017
000864391 037__ $$aFZJ-2019-04183
000864391 041__ $$aEnglish
000864391 082__ $$a530
000864391 1001_ $$0P:(DE-HGF)0$$aSchultheiß, J.$$b0$$eCorresponding author
000864391 245__ $$aInfluence of crystallographic structure on polarization reversal in polycrystalline ferroelectric/ferroelastic materials
000864391 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2019
000864391 3367_ $$2DRIVER$$aarticle
000864391 3367_ $$2DataCite$$aOutput Types/Journal article
000864391 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565619239_7092
000864391 3367_ $$2BibTeX$$aARTICLE
000864391 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864391 3367_ $$00$$2EndNote$$aJournal Article
000864391 520__ $$aPolarization reversal is the most fundamental physical process in ferroelectrics and directly or indirectly influences all functional properties of these materials. While this process is influenced by various intrinsic material’s properties and external boundary conditions, arguably one of the most dominant parameters is the material’s crystallographic structure. In this work, the influence of the crystallographic structure on the polarization reversal was investigated on the model ferroelectric system Pb(Zr,Ti)O3 using simultaneous time-dependent polarization and strain measurements. This method enabled one to extend the understanding beyond the widely investigated relationship between the structure and coercive fields. Polarization reversal was described by three regimes, which represent a sequence of well-defined non-180° and 180° switching events. The crystallographic structure was found to largely influence the mobility of the non-180° domain walls during the first switching regime, the amplitude of negative strain, and the broadness of the transition between the first and the second switching regimes, as well as the speed of the second (main) switching regime. The observed changes could be related to the amount of possible polarization directions, distribution of the local electric fields, and strain mismatch at domain wall junctions influenced by the lattice distortion. Moreover, activation fields for the first and the second regimes were experimentally determined for the investigated series of Pb(Zr,Ti)O3 samples. Besides providing insight into fundamental mechanisms of polarization reversal, these results can also be used as input parameters for micromechanical or stochastic models
000864391 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000864391 588__ $$aDataset connected to CrossRef
000864391 7001_ $$0P:(DE-Juel1)157700$$aKungl, H.$$b1$$ufzj
000864391 7001_ $$00000-0002-0258-6709$$aKoruza, J.$$b2
000864391 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.5081086$$gVol. 125, no. 17, p. 174101 -$$n17$$p174101 -$$tJournal of applied physics$$v125$$x1089-7550$$y2019
000864391 8564_ $$uhttps://juser.fz-juelich.de/record/864391/files/1.5081086.pdf$$yPublished on 2019-05-01. Available in OpenAccess from 2020-05-01.
000864391 8564_ $$uhttps://juser.fz-juelich.de/record/864391/files/1.5081086.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-05-01. Available in OpenAccess from 2020-05-01.
000864391 909CO $$ooai:juser.fz-juelich.de:864391$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b1$$kFZJ
000864391 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000864391 9141_ $$y2019
000864391 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864391 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864391 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000864391 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2017
000864391 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864391 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864391 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864391 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864391 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864391 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864391 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000864391 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864391 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000864391 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864391 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864391 920__ $$lyes
000864391 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000864391 9801_ $$aFullTexts
000864391 980__ $$ajournal
000864391 980__ $$aVDB
000864391 980__ $$aUNRESTRICTED
000864391 980__ $$aI:(DE-Juel1)IEK-9-20110218
000864391 981__ $$aI:(DE-Juel1)IET-1-20110218