001     864391
005     20240709082041.0
024 7 _ |a 10.1063/1.5081086
|2 doi
024 7 _ |a 0021-8979
|2 ISSN
024 7 _ |a 0148-6349
|2 ISSN
024 7 _ |a 1089-7550
|2 ISSN
024 7 _ |a 1520-8850
|2 ISSN
024 7 _ |a 2163-5102
|2 ISSN
024 7 _ |a 2128/22586
|2 Handle
024 7 _ |a WOS:000467257200017
|2 WOS
037 _ _ |a FZJ-2019-04183
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Schultheiß, J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Influence of crystallographic structure on polarization reversal in polycrystalline ferroelectric/ferroelastic materials
260 _ _ |a Melville, NY
|c 2019
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1565619239_7092
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polarization reversal is the most fundamental physical process in ferroelectrics and directly or indirectly influences all functional properties of these materials. While this process is influenced by various intrinsic material’s properties and external boundary conditions, arguably one of the most dominant parameters is the material’s crystallographic structure. In this work, the influence of the crystallographic structure on the polarization reversal was investigated on the model ferroelectric system Pb(Zr,Ti)O3 using simultaneous time-dependent polarization and strain measurements. This method enabled one to extend the understanding beyond the widely investigated relationship between the structure and coercive fields. Polarization reversal was described by three regimes, which represent a sequence of well-defined non-180° and 180° switching events. The crystallographic structure was found to largely influence the mobility of the non-180° domain walls during the first switching regime, the amplitude of negative strain, and the broadness of the transition between the first and the second switching regimes, as well as the speed of the second (main) switching regime. The observed changes could be related to the amount of possible polarization directions, distribution of the local electric fields, and strain mismatch at domain wall junctions influenced by the lattice distortion. Moreover, activation fields for the first and the second regimes were experimentally determined for the investigated series of Pb(Zr,Ti)O3 samples. Besides providing insight into fundamental mechanisms of polarization reversal, these results can also be used as input parameters for micromechanical or stochastic models
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kungl, H.
|0 P:(DE-Juel1)157700
|b 1
|u fzj
700 1 _ |a Koruza, J.
|0 0000-0002-0258-6709
|b 2
773 _ _ |a 10.1063/1.5081086
|g Vol. 125, no. 17, p. 174101 -
|0 PERI:(DE-600)1476463-5
|n 17
|p 174101 -
|t Journal of applied physics
|v 125
|y 2019
|x 1089-7550
856 4 _ |y Published on 2019-05-01. Available in OpenAccess from 2020-05-01.
|u https://juser.fz-juelich.de/record/864391/files/1.5081086.pdf
856 4 _ |y Published on 2019-05-01. Available in OpenAccess from 2020-05-01.
|x pdfa
|u https://juser.fz-juelich.de/record/864391/files/1.5081086.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864391
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157700
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21